A low-latency graph computer to identify metastable particles at the Large Hadron Collider for real-time analysis of potential dark matter signatures.
Sci Rep
; 14(1): 10181, 2024 May 03.
Article
en En
| MEDLINE
| ID: mdl-38702395
ABSTRACT
Image recognition is a pervasive task in many information-processing environments. We present a solution to a difficult pattern recognition problem that lies at the heart of experimental particle physics. Future experiments with very high-intensity beams will produce a spray of thousands of particles in each beam-target or beam-beam collision. Recognizing the trajectories of these particles as they traverse layers of electronic sensors is a massive image recognition task that has never been accomplished in real time. We present a real-time processing solution that is implemented in a commercial field-programmable gate array using high-level synthesis. It is an unsupervised learning algorithm that uses techniques of graph computing. A prime application is the low-latency analysis of dark-matter signatures involving metastable charged particles that manifest as disappearing tracks.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Sci Rep
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido