Your browser doesn't support javascript.
loading
Rapid prototyping and facile customization of conductive hydrogel bioelectronics based on all laser process.
Kim, Jin; Won, Daeyeon; Kim, Tae Hyun; Kim, C-Yoon; Ko, Seung Hwan.
Afiliación
  • Kim J; Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
  • Won D; Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
  • Kim TH; Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Kim CY; College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea. Electronic address: vivavet@konkuk.ac.kr.
  • Ko SH; Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu,
Biosens Bioelectron ; 258: 116327, 2024 Aug 15.
Article en En | MEDLINE | ID: mdl-38703496
ABSTRACT
Proper customization in size and shape is essential in implantable bioelectronics for stable bio-signal recording. Over the past decades, many researchers have heavily relied on conventional photolithography processes to fabricate implantable bioelectronics. Therefore, they could not avoid the critical limitation of high cost and complex processing steps to optimize bioelectronic devices for target organs with various sizes and shapes. Here, we propose rapid prototyping using all laser processes to fabricate customized bioelectronics. PEDOTPSS is selectively irradiated by an ultraviolet (UV) pulse laser to form wet-stable conductive hydrogels that can softly interact with biological tissues (50 µm line width). The encapsulation layer is selectively patterned using the same laser source by UV-curing polymer networks (110 µm line width). For high stretchability (over 100%), mesh structures are made by the selective laser cutting process. Our rapid prototyping strategy minimizes the use of high-cost equipment, using only a single UV laser source to process the electrodes, encapsulation, and substrates that constitute bioelectronics without a photomask, enabling the prototyping stretchable microelectrode array with an area of 1 cm2 less than 10 min. We fabricated an optimized stretchable microelectrode array with low impedances (∼1.1 kΩ at 1 kHz) that can effectively record rat's cardiac signals with various health states.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Hidrogeles / Conductividad Eléctrica / Rayos Láser Límite: Animals Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Hidrogeles / Conductividad Eléctrica / Rayos Láser Límite: Animals Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido