Your browser doesn't support javascript.
loading
CLIPPER 2.0: Peptide-Level Annotation and Data Analysis for Positional Proteomics.
Kalogeropoulos, Konstantinos; Moldt Haack, Aleksander; Madzharova, Elizabeta; Di Lorenzo, Antea; Hanna, Rawad; Schoof, Erwin M; Auf dem Keller, Ulrich.
Afiliación
  • Kalogeropoulos K; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark. Electronic address: konka@dtu.dk.
  • Moldt Haack A; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark. Electronic address: alemol@dtu.dk.
  • Madzharova E; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
  • Di Lorenzo A; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
  • Hanna R; Faculty of Biology, Technion-Israel Institute of Technology, Technion City Haifa, Israel.
  • Schoof EM; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
  • Auf dem Keller U; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
Mol Cell Proteomics ; 23(6): 100781, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38703894
ABSTRACT
Positional proteomics methodologies have transformed protease research, and have brought mass spectrometry (MS)-based degradomics studies to the forefront of protease characterization and system-wide interrogation of protease signaling. Considerable advancements in both sensitivity and throughput of liquid chromatography (LC)-MS/MS instrumentation enable the generation of enormous positional proteomics datasets of natural and protein termini and neo-termini of cleaved protease substrates. However, concomitant progress has not been observed to the same extent in data analysis and post-processing steps, arguably constituting the largest bottleneck in positional proteomics workflows. Here, we present a computational tool, CLIPPER 2.0, that builds on prior algorithms developed for MS-based protein termini analysis, facilitating peptide-level annotation and data analysis. CLIPPER 2.0 can be used with several sample preparation workflows and proteomics search algorithms and enables fast and automated database information retrieval, statistical and network analysis, as well as visualization of terminomic datasets. We demonstrate the applicability of our tool by analyzing GluC and MMP9 cleavages in HeLa lysates. CLIPPER 2.0 is available at https//github.com/UadKLab/CLIPPER-2.0.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Proteómica / Espectrometría de Masas en Tándem Límite: Humans Idioma: En Revista: Mol Cell Proteomics Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Proteómica / Espectrometría de Masas en Tándem Límite: Humans Idioma: En Revista: Mol Cell Proteomics Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos