Your browser doesn't support javascript.
loading
Engineered Phenylalanine Ammonia-Lyases for the Enantioselective Synthesis of Aspartic Acid Derivatives.
Buslov, Ivan; Desmons, Sarah; Duhoo, Yoan; Hu, Xile.
Afiliación
  • Buslov I; Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland.
  • Desmons S; Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland.
  • Duhoo Y; Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
  • Hu X; Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland.
Angew Chem Int Ed Engl ; 63(31): e202406008, 2024 07 29.
Article en En | MEDLINE | ID: mdl-38713131
ABSTRACT
Biocatalytic hydroamination of alkenes is an efficient and selective method to synthesize natural and unnatural amino acids. Phenylalanine ammonia-lyases (PALs) have been previously engineered to access a range of substituted phenylalanines and heteroarylalanines, but their substrate scope remains limited, typically including only arylacrylic acids. Moreover, the enantioselectivity in the hydroamination of electron-deficient substrates is often poor. Here, we report the structure-based engineering of PAL from Planctomyces brasiliensis (PbPAL), enabling preparative-scale enantioselective hydroaminations of previously inaccessible yet synthetically useful substrates, such as amide- and ester-containing fumaric acid derivatives. Through the elucidation of cryo-electron microscopy (cryo-EM) PbPAL structure and screening of the structure-based mutagenesis library, we identified the key active site residue L205 as pivotal for dramatically enhancing the enantioselectivity of hydroamination reactions involving electron-deficient substrates. Our engineered PALs demonstrated exclusive α-regioselectivity, high enantioselectivity, and broad substrate scope. The potential utility of the developed biocatalysts was further demonstrated by a preparative-scale hydroamination yielding tert-butyl protected l-aspartic acid, widely used as intermediate in peptide solid-phase synthesis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenilanina Amoníaco-Liasa / Ingeniería de Proteínas / Ácido Aspártico Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenilanina Amoníaco-Liasa / Ingeniería de Proteínas / Ácido Aspártico Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Alemania