Your browser doesn't support javascript.
loading
Influence of learned landmark correspondences on lung CT registration.
Bhat, Ishaan; Kuijf, Hugo J; Viergever, Max A; Pluim, Josien P W.
Afiliación
  • Bhat I; Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Kuijf HJ; Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Viergever MA; Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Pluim JPW; Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
Med Phys ; 51(8): 5321-5336, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38713916
ABSTRACT

BACKGROUND:

Disease or injury may cause a change in the biomechanical properties of the lungs, which can alter lung function. Image registration can be used to measure lung ventilation and quantify volume change, which can be a useful diagnostic aid. However, lung registration is a challenging problem because of the variation in deformation along the lungs, sliding motion of the lungs along the ribs, and change in density.

PURPOSE:

Landmark correspondences have been used to make deformable image registration robust to large displacements.

METHODS:

To tackle the challenging task of intra-patient lung computed tomography (CT) registration, we extend the landmark correspondence prediction model deep convolutional neural network-Match by introducing a soft mask loss term to encourage landmark correspondences in specific regions and avoid the use of a mask during inference. To produce realistic deformations to train the landmark correspondence model, we use data-driven synthetic transformations. We study the influence of these learned landmark correspondences on lung CT registration by integrating them into intensity-based registration as a distance-based penalty.

RESULTS:

Our results on the public thoracic CT dataset COPDgene show that using learned landmark correspondences as a soft constraint can reduce median registration error from approximately 5.46 to 4.08 mm compared to standard intensity-based registration, in the absence of lung masks.

CONCLUSIONS:

We show that using landmark correspondences results in minor improvements in local alignment, while significantly improving global alignment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Tomografía Computarizada por Rayos X / Pulmón Límite: Humans Idioma: En Revista: Med Phys Año: 2024 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Tomografía Computarizada por Rayos X / Pulmón Límite: Humans Idioma: En Revista: Med Phys Año: 2024 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Estados Unidos