Your browser doesn't support javascript.
loading
Assembly of π-Conjugated [B3O6] Units by Mer-Isomer [YO3F3] Octahedra to Design a UV Nonlinear Optical Material, Cs2YB3O6F2.
Wu, Hongping; Wei, Zhijun; Hu, Zhanggui; Wang, Jiyang; Wu, Yicheng; Yu, Hongwei.
Afiliación
  • Wu H; Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, No.391 Bin Shui West Road, Xiqing District, Tianjin, 300384, China.
  • Wei Z; Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, No.391 Bin Shui West Road, Xiqing District, Tianjin, 300384, China.
  • Hu Z; Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, No.391 Bin Shui West Road, Xiqing District, Tianjin, 300384, China.
  • Wang J; Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, No.391 Bin Shui West Road, Xiqing District, Tianjin, 300384, China.
  • Wu Y; Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, No.391 Bin Shui West Road, Xiqing District, Tianjin, 300384, China.
  • Yu H; Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, No.391 Bin Shui West Road, Xiqing District, Tianjin, 300384, China.
Angew Chem Int Ed Engl ; 63(30): e202406318, 2024 Jul 22.
Article en En | MEDLINE | ID: mdl-38715104
ABSTRACT
Achieving the extreme balance of the key performance requirements is the crucial to breakthrough the application bottleneck for nonlinear optical (NLO) materials. Herein, by assembly of the π-conjugated [B3O6] functional species with the aid of structure-directing property of mer-isomer [YO3F3] octahedra, a new ultraviolet (UV) NLO material, Cs2YB3O6F2 with aligned arrangement of coplanar [B3O6] groups has been synthesized. The polar material exhibits the rare coexistence of the largest second harmonic generation response of 5.6×KDP, the largest birefringence of 0.091 at 532 nm, the shortest Type I phase-matching down to 200.5 nm and deep-ultraviolet transparency among reported acentric rare-earth borates with [B3O6] groups. Remarkably, benefiting from the enhanced bonding force among functional units [B3O6], a firm three-dimensional framework is constructed, which facilitates the growth of large crystals. This can be proved by a block shape crystal with dimensional of 6×5×4 mm3, indicating that it was a promising UV NLO crystal. This work provides a powerful strategy to design UV NLO materials with good performances.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania