Your browser doesn't support javascript.
loading
Integrating Photoelectrochemical Feature on a Hydrovoltaic Chip with High-Salinity Adaption as a Self-Powered Device for Formaldehyde Monitoring.
Zhang, Zhechen; Guo, Junli; Zhao, Junjian; Tian, Yuetong; Gao, Zhida; Song, Pei; Song, Yan-Yan.
Afiliación
  • Zhang Z; College of Sciences, Northeastern University, Shenyang 110819, China.
  • Guo J; College of Sciences, Northeastern University, Shenyang 110819, China.
  • Zhao J; Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, China.
  • Tian Y; College of Sciences, Northeastern University, Shenyang 110819, China.
  • Gao Z; College of Sciences, Northeastern University, Shenyang 110819, China.
  • Song P; College of Sciences, Northeastern University, Shenyang 110819, China.
  • Song YY; Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China.
ACS Sens ; 9(5): 2520-2528, 2024 05 24.
Article en En | MEDLINE | ID: mdl-38723023
ABSTRACT
Alternative energy sources are required due to the decline in fossil fuel resources. Therefore, devices that utilize hydrovoltaic technology and light energy have drawn widespread attention because they are emission-free and solar energy is inexhaustible. However, previous investigations mainly focused on accelerating the water evaporation rate at the electrode interface. Here, a cooperative photoelectrochemical effect on a hydrovoltaic chip is achieved using NH2-MIL-125-modified TiO2 nanotube arrays (NTs). This device demonstrated significantly improved evaporation-triggered electricity generation. Under LED illumination, the open-circuit voltage (VOC) of the NH2-MIL-125/TiO2NTs active layer of the hydrovoltaic chip was enhanced by 90.3% (up to 400.2 mV). Furthermore, the prepared hydrovoltaic chip showed good high-salinity tolerance, maintaining 74.6% of its performance even in 5 M NaCl. By introducing a Schiff-based reaction between the active layer and formaldehyde, a fully integrated flexible sensor was successfully fabricated for formaldehyde monitoring, and a low limit of detection of 5.2 × 10-9 M was achieved. This novel strategy for improving the performance of hydrovoltaic devices offers a completely new general approach to construct self-powered devices for point-of-care sensing.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Titanio / Técnicas Electroquímicas / Formaldehído Idioma: En Revista: ACS Sens Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Titanio / Técnicas Electroquímicas / Formaldehído Idioma: En Revista: ACS Sens Año: 2024 Tipo del documento: Article País de afiliación: China
...