Coupling protein scaffold and biosilicification: A sustainable and recyclable approach for d-mannitol production via one-step purification and immobilization of multienzymes.
Int J Biol Macromol
; 269(Pt 2): 132196, 2024 Jun.
Article
en En
| MEDLINE
| ID: mdl-38723818
ABSTRACT
Enzymatic synthesis of biochemicals in vitro is vital in synthetic biology for its efficiency, minimal by-products, and easy product separation. However, challenges like enzyme preparation, stability, and reusability persist. Here, we introduced a protein scaffold and biosilicification coupled system, providing a singular process for the purification and immobilization of multiple enzymes. Using d-mannitol as a model, we initially constructed a self-assembling EE/KK protein scaffold for the co-immobilization of glucose dehydrogenase and mannitol dehydrogenase. Under an enzyme-to-scaffold ratio of 18, a d-mannitol yield of 0.692 mol/mol was achieved within 4 h, 2.16-fold higher than the free enzymes. The immobilized enzymes retained 70.9 % of the initial joint activity while the free ones diminished nearly to inactivity after 8 h. Furthermore, we incorporated the biosilicification peptide CotB into the EE/KK scaffold, inducing silica deposition, which enabled the one-step purification and immobilization process assisted by Spy/Snoop protein-peptide pairs. The coupled system demonstrated a comparable d-mannitol yield to that of EE/KK scaffold and 1.34-fold higher remaining activities after 36 h. Following 6 cycles of reaction, the immobilized system retained the capability to synthesize 56.4 % of the initial d-mannitol titer. The self-assembly co-immobilization platform offers an effective approach for enzymatic synthesis of d-mannitol and other biochemicals.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Enzimas Inmovilizadas
/
Manitol
Idioma:
En
Revista:
Int J Biol Macromol
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Países Bajos