Your browser doesn't support javascript.
loading
Boosting Upconversion Efficiency in Optically Inert Shelled Structures with Electroactive Membrane through Electron Donation.
Wang, Liu-Chun; Chen, Hong-Kai; Wang, Wen-Jyun; Hsu, Fang-Yi; Huang, Hong-Zhang; Kuo, Rui-Tong; Li, Wei-Peng; Tian, Hong-Kang; Yeh, Chen-Sheng.
Afiliación
  • Wang LC; Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan.
  • Chen HK; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan.
  • Wang WJ; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
  • Hsu FY; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
  • Huang HZ; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
  • Kuo RT; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
  • Li WP; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
  • Tian HK; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan.
  • Yeh CS; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
Adv Mater ; 36(30): e2404120, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38727702
ABSTRACT
This study innovatively addresses challenges in enhancing upconversion efficiency in lanthanide-based nanoparticles (UCNPs) by exploiting Shewanella oneidensis MR-1, a microorganism capable of extracellular electron transfer. Electroactive membranes, rich in c-type cytochromes, are extracted from bacteria and integrated into membrane-integrated liposomes (MILs), encapsulating core-shelled UCNPs with an optically inactive shell, forming UCNP@MIL constructs. The electroactive membrane, tailored to donate electrons through the inert shell, independently boosts upconversion emission under near-infrared excitation (980 or 1550 nm), bypassing ligand-sensitized UCNPs. The optically inactive shell restricts energy migration, emphasizing electroactive membrane electron donation. Density functional theory calculations elucidate efficient electron transfer due to the electroactive membrane hemes' highest occupied molecular orbital being higher than the valence band maximum of the optically inactive shell, crucial for enhancing energy transfer to emitter ions. The introduction of a SiO2 insulator coating diminishes light enhancement, underscoring the importance of unimpeded electron transfer. Luminescence enhancement remains resilient to variations in emitter or sensitizing ions, highlighting the robustness of the electron transfer-induced phenomenon. However, altering the inert shell material diminishes enhancement, emphasizing the role of electron transfer. This methodology holds significant promise for diverse biological applications. UCNP@MIL offers an advantage in cellular uptake, which proves beneficial for cell imaging.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Shewanella / Electrones Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Shewanella / Electrones Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Taiwán