Your browser doesn't support javascript.
loading
Non-Coagulant Spinning of High-Strength Fibers from Homopolymer Polyacrylonitrile Synthesized via Anionic Polymerisation.
Skvortsov, Ivan Yu; Kuzin, Mikhail S; Gerasimenko, Pavel S; Mironova, Maria V; Golubev, Yaroslav V; Kulichikhin, Valery G.
Afiliación
  • Skvortsov IY; A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, 119991 Moscow, Russia.
  • Kuzin MS; A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, 119991 Moscow, Russia.
  • Gerasimenko PS; A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, 119991 Moscow, Russia.
  • Mironova MV; A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, 119991 Moscow, Russia.
  • Golubev YV; A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, 119991 Moscow, Russia.
  • Kulichikhin VG; A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, 119991 Moscow, Russia.
Polymers (Basel) ; 16(9)2024 Apr 23.
Article en En | MEDLINE | ID: mdl-38732654
ABSTRACT
The rheological properties, spinnability, and thermal-oxidative stabilization of high-molecular-weight linear polyacrylonitrile (PAN) homopolymers (molecular weights Mη = 90-500 kg/mol), synthesized via a novel metal-free anionic polymerization method, were investigated to reduce coagulant use, enable solvent recycling, and increase the carbon yield of the resulting carbon fibers. This approach enabled the application of the mechanotropic (non-coagulating) spinning method for homopolymer PAN solutions in a wide range of molecular weights and demonstrated the possibility of achieving a high degree of fiber orientation and reasonable mechanical properties. Rheological analysis revealed a significant increase in solution elasticity (G') with increasing molecular weight, facilitating the choice of optimal deformation rates for effective chain stretching prior to strain-induced phase separation during the eco-friendly spinning of concentrated solutions without using coagulation baths. The possibility of collecting ~80 wt% of the solvent at the first stage of spinning from the as-spun fibers was shown. Transparent, defect-free fibers with a tensile strength of up to 800 MPa and elongation at break of about 20% were spun. Thermal treatment up to 1500 °C yielded carbon fibers with a carbon residue of ~50 wt%, in contrast to ~35 wt% for industrial radically polymerized PAN carbonized under the same conditions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Rusia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Rusia