Your browser doesn't support javascript.
loading
Integrated modeling and simulation of recruitment of myocardial perfusion and oxygen delivery in exercise.
Sturgess, Victoria E; Tune, Johnathan D; Figueroa, C Alberto; Carlson, Brian E; Beard, Daniel A.
Afiliación
  • Sturgess VE; Department of Biomedical Engineering, University of Michigan, United States of America; Section of Vascular Surgery, Department of Surgery, University of Michigan, United States of America.
  • Tune JD; Department of Physiology and Anatomy, University of North Texas Health Science Center, United States of America.
  • Figueroa CA; Department of Biomedical Engineering, University of Michigan, United States of America; Department of Molecular and Integrative Physiology, University of Michigan, United States of America.
  • Carlson BE; Department of Molecular and Integrative Physiology, University of Michigan, United States of America.
  • Beard DA; Department of Molecular and Integrative Physiology, University of Michigan, United States of America. Electronic address: beardda@umich.edu.
J Mol Cell Cardiol ; 192: 94-108, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38754551
ABSTRACT
While exercise-mediated vasoregulation in the myocardium is understood to be governed by autonomic, myogenic, and metabolic-mediated mechanisms, we do not yet understand the spatial heterogeneity of vasodilation or its effects on microvascular flow patterns and oxygen delivery. This study uses a simulation and modeling approach to explore the mechanisms underlying the recruitment of myocardial perfusion and oxygen delivery in exercise. The simulation approach integrates model components representing whole-body cardiovascular hemodynamics, cardiac mechanics and myocardial work; myocardial perfusion; and myocardial oxygen transport. Integrating these systems together, model simulations reveal (1.) To match expected flow and transmural flow ratios at increasing levels of exercise, a greater degree of vasodilation must occur in the subendocardium compared to the subepicardium. (2.) Oxygen extraction and venous oxygenation are predicted to substantially decrease with increasing exercise level preferentially in the subendocardium, suggesting that an oxygen-dependent error signal driving metabolic mediated recruitment of flow would be operative only in the subendocardium. (3.) Under baseline physiological conditions approximately 4% of the oxygen delivered to the subendocardium may be supplied via retrograde flow from coronary veins.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxígeno / Simulación por Computador / Ejercicio Físico / Circulación Coronaria / Modelos Cardiovasculares / Miocardio Límite: Humans Idioma: En Revista: J Mol Cell Cardiol Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxígeno / Simulación por Computador / Ejercicio Físico / Circulación Coronaria / Modelos Cardiovasculares / Miocardio Límite: Humans Idioma: En Revista: J Mol Cell Cardiol Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos
...