Your browser doesn't support javascript.
loading
Heat Dissipation Mechanisms in Hybrid Superconductor-Semiconductor Devices Revealed by Joule Spectroscopy.
Ibabe, Ángel; Steffensen, Gorm O; Casal, Ignacio; Gómez, Mario; Kanne, Thomas; Nygård, Jesper; Levy Yeyati, Alfredo; Lee, Eduardo J H.
Afiliación
  • Ibabe Á; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
  • Steffensen GO; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
  • Casal I; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
  • Gómez M; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
  • Kanne T; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
  • Nygård J; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
  • Levy Yeyati A; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
  • Lee EJH; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Nano Lett ; 24(22): 6488-6495, 2024 Jun 05.
Article en En | MEDLINE | ID: mdl-38771151
ABSTRACT
Understanding heating and cooling mechanisms in mesoscopic superconductor-semiconductor devices is crucial for their application in quantum technologies. Owing to their poor thermal conductivity, heating effects can drive superconducting-to-normal transitions even at low bias, observed as sharp conductance dips through the loss of Andreev excess currents. Tracking such dips across magnetic field, cryostat temperature, and applied microwave power allows us to uncover cooling bottlenecks in different parts of a device. By applying this "Joule spectroscopy" technique, we analyze heat dissipation in devices based on InAs-Al nanowires and reveal that cooling of superconducting islands is limited by the rather inefficient electron-phonon coupling, as opposed to grounded superconductors that primarily cool by quasiparticle diffusion. We show that powers as low as 50-150 pW are able to suppress superconductivity on the islands. Applied microwaves lead to similar heating effects but are affected by the interplay of the microwave frequency and the effective electron-phonon relaxation time.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: España