Your browser doesn't support javascript.
loading
Cryo-EM structures elucidate the multiligand receptor nature of megalin.
Goto, Sawako; Tsutsumi, Akihisa; Lee, Yongchan; Hosojima, Michihiro; Kabasawa, Hideyuki; Komochi, Koichi; Nagatoishi, Satoru; Takemoto, Kazuya; Tsumoto, Kouhei; Nishizawa, Tomohiro; Kikkawa, Masahide; Saito, Akihiko.
Afiliación
  • Goto S; Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan.
  • Tsutsumi A; Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
  • Lee Y; Department of the Biological Membrane Dynamics, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.
  • Hosojima M; Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan.
  • Kabasawa H; Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan.
  • Komochi K; Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan.
  • Nagatoishi S; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
  • Takemoto K; Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan.
  • Tsumoto K; Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
  • Nishizawa T; Department of the Biological Membrane Dynamics, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.
  • Kikkawa M; Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
  • Saito A; Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan.
Proc Natl Acad Sci U S A ; 121(22): e2318859121, 2024 May 28.
Article en En | MEDLINE | ID: mdl-38771880
ABSTRACT
Megalin (low-density lipoprotein receptor-related protein 2) is a giant glycoprotein of about 600 kDa, mediating the endocytosis of more than 60 ligands, including those of proteins, peptides, and drug compounds [S. Goto, M. Hosojima, H. Kabasawa, A. Saito, Int. J. Biochem. Cell Biol. 157, 106393 (2023)]. It is expressed predominantly in renal proximal tubule epithelial cells, as well as in the brain, lungs, eyes, inner ear, thyroid gland, and placenta. Megalin is also known to mediate the endocytosis of toxic compounds, particularly those that cause renal and hearing disorders [Y. Hori et al., J. Am. Soc. Nephrol. 28, 1783-1791 (2017)]. Genetic megalin deficiency causes Donnai-Barrow syndrome/facio-oculo-acoustico-renal syndrome in humans. However, it is not known how megalin interacts with such a wide variety of ligands and plays pathological roles in various organs. In this study, we elucidated the dimeric architecture of megalin, purified from rat kidneys, using cryoelectron microscopy. The maps revealed the densities of endogenous ligands bound to various regions throughout the dimer, elucidating the multiligand receptor nature of megalin. We also determined the structure of megalin in complex with receptor-associated protein, a molecular chaperone for megalin. The results will facilitate further studies on the pathophysiology of megalin-dependent multiligand endocytic pathways in multiple organs and will also be useful for the development of megalin-targeted drugs for renal and hearing disorders, Alzheimer's disease [B. V. Zlokovic et al., Proc. Natl. Acad. Sci. U.S.A. 93, 4229-4234 (1996)], and other illnesses.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microscopía por Crioelectrón / Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad Límite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microscopía por Crioelectrón / Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad Límite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Estados Unidos