Your browser doesn't support javascript.
loading
An Organophosphorescence Probe with Ultralong Lifetime and Intrinsic Tissue Selectivity for Specific Tumor Imaging and Guided Tumor Surgery.
Gao, Heqi; Zhang, Tingting; Lei, Yunxiang; Jiao, Di; Yu, Bo; Yuan, Wang Zhang; Ji, Jian; Jin, Qiao; Ding, Dan.
Afiliación
  • Gao H; Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China.
  • Zhang T; Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
  • Lei Y; School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
  • Jiao D; Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China.
  • Yu B; MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
  • Yuan WZ; Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
  • Ji J; MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
  • Jin Q; MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
  • Ding D; Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China.
Angew Chem Int Ed Engl ; : e202406651, 2024 May 23.
Article en En | MEDLINE | ID: mdl-38781352
ABSTRACT
Organic phosphorescent materials are excellent candidates for use in tumor imaging. However, a systematic comparison of the effects of the intensity, lifetime, and wavelength of phosphorescent emissions on bioimaging performance has not yet been undertaken. In addition, there have been few reports on organic phosphorescent materials that specifically distinguish tumors from normal tissues. This study addresses these gaps and reveals that longer lifetimes effectively increase the signal intensity, whereas longer wavelengths enhance the penetration depth. Conversely, a strong emission intensity with a short lifetime does not necessarily yield robust imaging signals. Building upon these findings, an organo-phosphorescent material with a lifetime of 0.94 s was designed for tumor imaging. Remarkably, the phosphorescent signals of various organic nanoparticles are nearly extinguished in blood-rich organs because of the quenching effect of iron ions. Moreover, for the first time, we demonstrated that iron ions universally quench the phosphorescence of organic room-temperature phosphorescent materials, which is an inherent property of such substances. Leveraging this property, both the normal liver and hepatitis tissues exhibit negligible phosphorescent signals, whereas liver tumors display intense phosphorescence. Therefore, phosphorescent materials, unlike chemiluminescent or fluorescent materials, can exploit this unique inherent property to selectively distinguish liver tumor tissues from normal tissues without additional modifications or treatments.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article
...