Your browser doesn't support javascript.
loading
Utilizing machine learning to predict post-treatment outcomes in chronic non-specific neck pain patients undergoing cervical extension traction.
Moustafa, Ibrahim M; Ozsahin, Dilber Uzun; Mustapha, Mubarak Taiwo; Ahbouch, Amal; Oakley, Paul A; Harrison, Deed E.
Afiliación
  • Moustafa IM; Department of Physiotherapy, College of Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
  • Ozsahin DU; Neuromusculoskeletal Rehabilitation Research Group, RIMHS-Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
  • Mustapha MT; Faculty of Physical Therapy, Cairo University, Giza, 12613, Egypt.
  • Ahbouch A; Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Sharjah, United Arab Emirates.
  • Oakley PA; Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, 99138, Nicosia, Turkey.
  • Harrison DE; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
Sci Rep ; 14(1): 11781, 2024 05 23.
Article en En | MEDLINE | ID: mdl-38783089
ABSTRACT
This study explored the application of machine learning in predicting post-treatment outcomes for chronic neck pain patients undergoing a multimodal program featuring cervical extension traction (CET). Pre-treatment demographic and clinical variables were used to develop predictive models capable of anticipating modifications in cervical lordotic angle (CLA), pain and disability of 570 patients treated between 2014 and 2020. Linear regression models used pre-treatment variables of age, body mass index, CLA, anterior head translation, disability index, pain score, treatment frequency, duration and compliance. These models used the sci-kit-learn machine learning library within Python for implementing linear regression algorithms. The linear regression models demonstrated high precision and accuracy, and effectively explained 30-55% of the variability in post-treatment outcomes, the highest for the CLA. This pioneering study integrates machine learning into spinal rehabilitation. The developed models offer valuable information to customize interventions, set realistic expectations, and optimize treatment strategies based on individual patient characteristics as treated conservatively with rehabilitation programs using CET as part of multimodal care.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tracción / Dolor de Cuello / Dolor Crónico / Aprendizaje Automático Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Emiratos Árabes Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tracción / Dolor de Cuello / Dolor Crónico / Aprendizaje Automático Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Emiratos Árabes Unidos Pais de publicación: Reino Unido