Your browser doesn't support javascript.
loading
Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products.
Höing, Lars; Sowa, Sven T; Toplak, Marina; Reinhardt, Jakob K; Jakob, Roman; Maier, Timm; Lill, Markus A; Teufel, Robin.
Afiliación
  • Höing L; Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland robin.teufel@unibas.ch.
  • Sowa ST; Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland robin.teufel@unibas.ch.
  • Toplak M; Hilde-Mangold-Haus (CIBSS), University of Freiburg Habsburgerstrasse 49 79104 Freiburg im Breisgau Germany.
  • Reinhardt JK; Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland robin.teufel@unibas.ch.
  • Jakob R; Biozentrum, University of Basel Spitalstrasse 41 4056 Basel Switzerland.
  • Maier T; Biozentrum, University of Basel Spitalstrasse 41 4056 Basel Switzerland.
  • Lill MA; Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland.
  • Teufel R; Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland robin.teufel@unibas.ch.
Chem Sci ; 15(20): 7749-7756, 2024 May 22.
Article en En | MEDLINE | ID: mdl-38784727
ABSTRACT
The non-benzenoid aromatic tropone ring is a structural motif of numerous microbial and plant natural products with potent bioactivities. In bacteria, tropone biosynthesis involves early steps of the widespread CoA-dependent phenylacetic acid (paa) catabolon, from which a shunt product is sequestered and surprisingly further utilized as a universal precursor for structurally and functionally diverse tropone derivatives such as tropodithietic acid or (hydroxy)tropolones. Here, we elucidate the biosynthesis of the antibiotic 3,7-dihydroxytropolone in Actinobacteria by in vitro pathway reconstitution using paa catabolic enzymes as well as dedicated downstream tailoring enzymes, including a thioesterase (TrlF) and two flavoprotein monooxygenases (TrlCD and TrlE). We furthermore mechanistically and structurally characterize the multifunctional key enzyme TrlE, which mediates an unanticipated ipso-substitution involving a hydroxylation and subsequent decarboxylation of the CoA-freed side chain, followed by ring oxidation to afford tropolone. This study showcases a remarkably efficient strategy for 3,7-dihydroxytropolone biosynthesis and illuminates the functions of the involved biosynthetic enzymes.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2024 Tipo del documento: Article