Enhancing Thrombophilia Risk Prediction Through AI-Based Methodologies.
Stud Health Technol Inform
; 314: 125-126, 2024 May 23.
Article
en En
| MEDLINE
| ID: mdl-38785017
ABSTRACT
Thrombophilia, a predisposition to thrombosis, poses significant diagnostic challenges due to its multi-factorial nature, encompassing genetic and acquired factors. Current diagnostic paradigms, primarily relying on a combination of clinical assessment and targeted laboratory tests, often fail to capture the complex interplay of factors contributing to thrombophilia risk. This paper proposes an innovative artificial intelligence (AI)-based methodology aimed to enhance the prediction of thrombophilia risk. The designed multidimensional risk assessment model integrates and elaborates through AI a comprehensive collection of patient data types, including genetic markers, clinical parameters, patient history, and lifestyle factors, in order to obtain advanced and personalized explainable diagnoses.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Inteligencia Artificial
/
Trombofilia
Límite:
Humans
Idioma:
En
Revista:
Stud Health Technol Inform
Asunto de la revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Año:
2024
Tipo del documento:
Article
País de afiliación:
Italia
Pais de publicación:
Países Bajos