Your browser doesn't support javascript.
loading
Genome-Wide Identification and Expression Pattern Analysis of TIFY Family Genes Reveal Their Potential Roles in Phalaenopsis aphrodite Flower Opening.
Guan, Yunxiao; Zhang, Qiaoyu; Li, Minghe; Zhai, Junwen; Wu, Shasha; Ahmad, Sagheer; Lan, Siren; Peng, Donghui; Liu, Zhong-Jian.
Afiliación
  • Guan Y; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Shangxiadian Road No. 15, Cangshan District, Fuzhou 350002, China.
  • Zhang Q; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Shangxiadian Road No. 15, Cangshan District, Fuzhou 350002, China.
  • Li M; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Shangxiadian Road No. 15, Cangshan District, Fuzhou 350002, China.
  • Zhai J; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Shangxiadian Road No. 15, Cangshan District, Fuzhou 350002, China.
  • Wu S; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Shangxiadian Road No. 15, Cangshan District, Fuzhou 350002, China.
  • Ahmad S; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Shangxiadian Road No. 15, Cangshan District, Fuzhou 350002, China.
  • Lan S; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Shangxiadian Road No. 15, Cangshan District, Fuzhou 350002, China.
  • Peng D; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Shangxiadian Road No. 15, Cangshan District, Fuzhou 350002, China.
  • Liu ZJ; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Shangxiadian Road No. 15, Cangshan District, Fuzhou 350002, China.
Int J Mol Sci ; 25(10)2024 May 16.
Article en En | MEDLINE | ID: mdl-38791460
ABSTRACT
The TIFY gene family (formerly known as the zinc finger proteins expressed in inflorescence meristem (ZIM) family) not only functions in plant defense responses but also are widely involved in regulating plant growth and development. However, the identification and functional analysis of TIFY proteins remain unexplored in Orchidaceae. Here, we identified 19 putative TIFY genes in the Phalaenopsis aphrodite genome. The phylogenetic tree classified them into four subfamilies 14 members from JAZ, 3 members from ZML, and 1 each from PPD and TIFY. Sequence analysis revealed that all Phalaenopsis TIFY proteins contained a TIFY domain. Exon-intron analysis showed that the intron number and length of Phalaenopsis TIFY genes varied, whereas the same subfamily and subgroup genes had similar exon or intron numbers and distributions. The most abundant cis-elements in the promoter regions of the 19 TIFY genes were associated with light responsiveness, followed by MeJA and ABA, indicating their potential regulation by light and phytohormones. The 13 candidate TIFY genes screened from the transcriptome data exhibited two types of expression trends, suggesting their different roles in cell proliferation and cell expansion of floral organ growth during Phalaenopsis flower opening. Overall, this study serves as a background for investigating the underlying roles of TIFY genes in floral organ growth in Phalaenopsis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Familia de Multigenes / Regulación de la Expresión Génica de las Plantas / Orchidaceae / Flores Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Familia de Multigenes / Regulación de la Expresión Génica de las Plantas / Orchidaceae / Flores Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article País de afiliación: China