Your browser doesn't support javascript.
loading
Matrisome Transcriptome Dynamics during Tissue Aging.
Guvatova, Zulfiya G; Kobelyatskaya, Anastasiya A; Kudasheva, Eveline R; Pudova, Elena A; Bulavkina, Elizaveta V; Churov, Alexey V; Tkacheva, Olga N; Moskalev, Alexey A.
Afiliación
  • Guvatova ZG; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
  • Kobelyatskaya AA; Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia.
  • Kudasheva ER; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
  • Pudova EA; Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia.
  • Bulavkina EV; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
  • Churov AV; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
  • Tkacheva ON; Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia.
  • Moskalev AA; Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia.
Life (Basel) ; 14(5)2024 May 07.
Article en En | MEDLINE | ID: mdl-38792614
ABSTRACT
The extracellular matrix (ECM) is a complex three-dimensional network of macromolecules that provides structural support for the cells and plays a significant role in tissue homeostasis and repair. Growing evidence indicates that dysregulation of ECM remodeling contributes to various pathological conditions in the body, including age-associated diseases. In this work, gene expression data of normal human tissues obtained from the Genotype-Tissue Expression project, as well as data from MatrisomeDB 2.0, the ECM-protein knowledge database, are used to estimate the age-dependent matrisome transcriptome dynamics in the blood, heart, brain, liver, kidneys, lungs, and muscle. Differential gene expression (DE) analysis revealed dozens of matrisome genes encoding both structural elements of the ECM and ECM-associated proteins, which had a tissue-specific expression profile with age. Among common DE genes that changed expression with age in at least three tissues, COL18A1, MFAP1, IGFBP7, AEBP1, LTBP2, LTBP4, LG14, EFEMP1, PRELP, BGN, FAM20B, CTSC, CTSS, and CLEC2B were observed. The findings of the study also reveal that there are sex-specific alterations during aging in the matrisome gene expression. Taken together, the results obtained in this work may help in understanding the role of the ECM in tissue aging and might prove valuable for the future development of the field of ECM research in general.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Life (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Rusia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Life (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Rusia Pais de publicación: Suiza