Your browser doesn't support javascript.
loading
Balancing versus modelling in weighted analysis of non-randomised studies with survival outcomes: A simulation study.
Filla, Tim; Schwender, Holger; Kuss, Oliver.
Afiliación
  • Filla T; Department of Medical Biometry and Bioinformatics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  • Schwender H; Institute of Rheumatology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  • Kuss O; Mathematical Institute, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Stat Med ; 43(17): 3140-3163, 2024 Jul 30.
Article en En | MEDLINE | ID: mdl-38801062
ABSTRACT
Weighting methods are widely used for causal effect estimation in non-randomised studies. In general, these methods use the propensity score (PS), the probability of receiving the treatment given the covariates, to arrive at the respective weights. All of these "modelling" methods actually optimize prediction of the respective outcome, which is, in the PS model, treatment assignment. However, this does not match with the actual aim of weighting, which is eliminating the association between covariates and treatment assignment. In the "balancing" approach, covariates are thus balanced directly by solving systems of numerical equations, explicitly without fitting a PS model. To compare modelling, balancing and hybrid approaches to weighting we performed a large simulation study for a binary treatment and a survival outcome. For maximal practical relevance all simulation parameters were selected after a systematic review of medical studies that used PS methods for analysis. We also introduce a new hybrid method that uses the idea of the covariate balancing propensity score and matching weights, thus avoiding extreme weights. In addition, we present a corrected robust variance estimator for some of the methods. Overall, our simulations results indicate that balancing approach methods work worse than expected. However, among the considered balancing methods, entropy balancing consistently outperforms the variance balancing approach. All methods estimating the average treatment effect in the overlap population perform well with very little bias and small standard errors even in settings with misspecified propensity score models. Finally, the coverage using the standard robust variance estimator was too high for all methods, with the proposed corrected robust variance estimator improving coverage in a variety of settings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Modelos Estadísticos / Puntaje de Propensión Límite: Humans Idioma: En Revista: Stat Med Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Modelos Estadísticos / Puntaje de Propensión Límite: Humans Idioma: En Revista: Stat Med Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido