Metal oxide hybridization enhances room temperature phosphorescence of carbon dots-SiO2 matrix for information encryption and anti-counterfeiting.
Nanoscale
; 16(23): 11310-11317, 2024 Jun 13.
Article
en En
| MEDLINE
| ID: mdl-38804052
ABSTRACT
Room temperature phosphorescent (RTP) carbon dot (CD) materials have been widely used in various fields, but it is difficult to achieve a long lifetime, high stability and easy synthesis. In particular, realizing the phosphorescence emission of CDs using a metal oxide (MO) matrix is a challenge. Here, solid gels are synthesized via in situ hydrolysis, and then RTP CDs are synthesized based on a SiO2 matrix (CDs@SiO2) and hybridized with a MO matrix (CDs@SiO2-MO) by high-temperature calcination. Among the materials synthesized, Al2O3 matrix RTP CDs (CDs@SiO2-Al2O3) have a long phosphorescence lifetime of 689 ms and can exhibit yellow-green light visible to the naked eye for 9 s after the UV light (365 nm) is turned off. Compared with the green phosphorescence of CDs@SiO2, the yellow-green phosphorescence lifetime of CDs@SiO2-Al2O3 is enhanced by 420 ms. In addition, CDs@SiO2-Al2O3 maintains good stability of phosphorescence emission in water, strongly oxidizing solutions and organic solvents. As a result, CDs@SiO2-Al2O3 can be applied to the field of information encryption and security anti-counterfeiting, and this work provides a new, easy and efficient synthesis method for MO as an RTP CD matrix.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nanoscale
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido