Your browser doesn't support javascript.
loading
System optimization study of hybrid K-edge/XRF densitometer for uranium-plutonium solution measurement.
Zhang, Yan; Fu, Chun-Qing; Qiu, Jun; Qu, Jin-Hui; Yang, Yu-Chao; Wang, Ren-Bo; Tang, Bin.
Afiliación
  • Zhang Y; Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, China; Engineering Research Center of Nuclear Technology Application, Ministry of Education, East China University of Technology, Nanchang, 330013, China. Electron
  • Fu CQ; Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, China.
  • Qiu J; Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, China.
  • Qu JH; Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, China.
  • Yang YC; Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, China.
  • Wang RB; Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, China.
  • Tang B; Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, China.
Appl Radiat Isot ; 210: 111367, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38805984
ABSTRACT
In this paper, a comprehensive hybrid K-edge/XRF densitometer (HKED) device model is constructed using MCNP simulation. After the modeling process, a systematic simulation study is conducted to analyze the physical parameters and material selection of KED and XRF. The simulation results reveal that the optimal parameters for the X-ray tube are an X-ray source voltage of 160 kV and a 1 mm Fe filter. The sample should be placed in a vial with an inner diameter of 1.4 cm and an outer diameter of 2 cm. For the KED technique, the determined main parameters are a 1.9 cm Fe filter rod and an inner diameter of 0.08 cm for the collimator. For the XRF technique, the determined main parameters are a 0.01 cm Gd filter and an inner diameter of 0.3 cm for the collimator, with a detector angle of 150°. After selecting appropriate parameters, the average calibration factor Δµ of the KED technique was found to be 3.301 cm2 g-1, with a relative standard deviation (RSD) of 3.36%. Additionally, the comparison between the simulated and calculated values of uranium concentration revealed a minimum measurement error of 0.4%. The minimum detection concentration of KED for uranium solutions is approximately 1 g/L. For plutonium solutions ranging from 0.5 to 20 g/L, linear fitting of the Ka1 net peak area and plutonium concentration showed a coefficient of determination (R2) of 0.999. The detection limit of XRF for plutonium measurement was 2.33✕10-4 g/L. The linear fitting coefficients (R2) of uranium concentration versus K-edge transmission rate and plutonium concentration versus Ka1 net peak area for the hybrid technique in measuring uranium-plutonium mixed solutions are determined as 0.999 and 0.996, respectively, demonstrating the response relationship of the HKED device to uranium and plutonium under different concentrations.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Appl Radiat Isot / Appl. radiat. isot / Applied radiation and isotopes Asunto de la revista: MEDICINA NUCLEAR / SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Appl Radiat Isot / Appl. radiat. isot / Applied radiation and isotopes Asunto de la revista: MEDICINA NUCLEAR / SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido