Your browser doesn't support javascript.
loading
Improved ACOM pattern matching in 4D-STEM through adaptive sub-pixel peak detection and image reconstruction.
Folastre, Nicolas; Cao, Junhao; Oney, Gozde; Park, Sunkyu; Jamali, Arash; Masquelier, Christian; Croguennec, Laurence; Veron, Muriel; Rauch, Edgar F; Demortière, Arnaud.
Afiliación
  • Folastre N; Laboratoire de Réactivité et Chimie des Solides (LRCS), CNRS-UPJV UMR 7314, Hub de l'Energie, rue Baudelocque, 80039, Amiens Cedex, France.
  • Cao J; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, Hub de l'Energie, rue Baudelocque, 80039, Amiens Cedex, France.
  • Oney G; Laboratoire de Réactivité et Chimie des Solides (LRCS), CNRS-UPJV UMR 7314, Hub de l'Energie, rue Baudelocque, 80039, Amiens Cedex, France.
  • Park S; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, Hub de l'Energie, rue Baudelocque, 80039, Amiens Cedex, France.
  • Jamali A; Laboratoire de Réactivité et Chimie des Solides (LRCS), CNRS-UPJV UMR 7314, Hub de l'Energie, rue Baudelocque, 80039, Amiens Cedex, France.
  • Masquelier C; Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Bordeaux, France.
  • Croguennec L; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, Hub de l'Energie, rue Baudelocque, 80039, Amiens Cedex, France.
  • Veron M; Laboratoire de Réactivité et Chimie des Solides (LRCS), CNRS-UPJV UMR 7314, Hub de l'Energie, rue Baudelocque, 80039, Amiens Cedex, France.
  • Rauch EF; Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Bordeaux, France.
  • Demortière A; Laboratoire de Réactivité et Chimie des Solides (LRCS), CNRS-UPJV UMR 7314, Hub de l'Energie, rue Baudelocque, 80039, Amiens Cedex, France.
Sci Rep ; 14(1): 12385, 2024 May 29.
Article en En | MEDLINE | ID: mdl-38811806
ABSTRACT
The technique known as 4D-STEM has recently emerged as a powerful tool for the local characterization of crystalline structures in materials, such as cathode materials for Li-ion batteries or perovskite materials for photovoltaics. However, the use of new detectors optimized for electron diffraction patterns and other advanced techniques requires constant adaptation of methodologies to address the challenges associated with crystalline materials. In this study, we present a novel image-processing method to improve pattern matching in the determination of crystalline orientations and phases. Our approach uses sub-pixel adaptive image processing to register and reconstruct electron diffraction signals in large 4D-STEM datasets. By using adaptive prominence and linear filters, we can improve the quality of the diffraction pattern registration. The resulting data compression rate of 103 is well-suited for the era of big data and provides a significant enhancement in the performance of the entire ACOM data processing method. Our approach is evaluated using dedicated metrics, which demonstrate a high improvement in phase recognition. Several features are extracted from the registered data to map properties such as the spot count, and various virtual dark fields, which are used to enhance the handling of the results maps. Our results demonstrate that this data preparation method not only enhances the quality of the resulting image but also boosts the confidence level in the analysis of the outcomes related to determining crystal orientation and phase. Additionally, it mitigates the impact of user bias that may occur during the application of the method through the manipulation of parameters.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido