Your browser doesn't support javascript.
loading
A Bayesian hierarchical hidden Markov model for clustering and gene selection: Application to kidney cancer gene expression data.
Chekouo, Thierry; Mukherjee, Himadri.
Afiliación
  • Chekouo T; Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minnesota, USA.
  • Mukherjee H; Department of Mathematics and Statistics, University of Minnesota Duluth, Minnesota, USA.
Biom J ; 66(4): e2300173, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38817110
ABSTRACT
We introduce a Bayesian approach for biclustering that accounts for the prior functional dependence between genes using hidden Markov models (HMMs). We utilize biological knowledge gathered from gene ontologies and the hidden Markov structure to capture the potential coexpression of neighboring genes. Our interpretable model-based clustering characterized each cluster of samples by three groups of features overexpressed, underexpressed, and irrelevant features. The proposed methods have been implemented in an R package and are used to analyze both the simulated data and The Cancer Genome Atlas kidney cancer data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cadenas de Markov / Teorema de Bayes / Neoplasias Renales Límite: Humans Idioma: En Revista: Biom J Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cadenas de Markov / Teorema de Bayes / Neoplasias Renales Límite: Humans Idioma: En Revista: Biom J Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania