Rigid Phase Formation and Sb3+ Doping of Tin (IV) Halide Hybrids toward Photoluminescence Enhancement and Tuning for Anti-Counterfeiting and Information Encryption.
Angew Chem Int Ed Engl
; 63(33): e202408653, 2024 Aug 12.
Article
en En
| MEDLINE
| ID: mdl-38819994
ABSTRACT
Multi-excitonic emitting materials in luminescent metal halides are emerging candidates for anti-counterfeiting and information encryption applications. Herein, ATPP2SnCl6 (ATPP=acetonyltriphenylphosphonium) phase was designed and synthesized by rationally choosing emissive organic reagent of ATPPCl and non-toxic stable metal ions of Sn4+, and Sb3+ was further doped into ATPP2SnCl6 to tune the photoluminescence with external self-trapped excitons emission. The derived non-toxic ATPP2SnCl6 shows multi-excitonic luminescent centers verified by optical study and differential charge-density from density functional theory calculations. Incorporation of Sb3+ dopants and the increasing concentrations induce the efficient energy transfer therein, thus enhancing photoluminescence quantum yield from 5.1 % to 73.8 %. The multi-excitonic emission inspires the creation of information encryption and decryption by leveraging the photoluminescence from ATPPCl to ATPP2SnCl6 host and ATPP2SnCl6 Sb3+. This study facilitates the anti-counterfeiting application by employing solution-processable luminescent metal halides materials with excitation-dependent PL properties.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Alemania