Your browser doesn't support javascript.
loading
Gene alterations in the nuclear transport receptor superfamily: A study of head and neck cancer.
Nguyen, Phuong Thao; Shimojukkoku, Yudai; Kajiya, Yuka; Oku, Yasunobu; Tomishima, Ayami; Shima, Kaori; Sasahira, Tomonori.
Afiliación
  • Nguyen PT; Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan.
  • Shimojukkoku Y; Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan.
  • Kajiya Y; Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan.
  • Oku Y; Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan.
  • Tomishima A; Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan.
  • Shima K; Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan.
  • Sasahira T; Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan.
PLoS One ; 19(5): e0300446, 2024.
Article en En | MEDLINE | ID: mdl-38820302
ABSTRACT
In cancer cells, the nuclear transport system is often disrupted, leading to abnormal localization of nuclear proteins and altered gene expression. This disruption can arise from various mechanisms such as mutations in genes that regulate nuclear transport, altered expression of transport proteins, and changes in nuclear envelope structure. Oncogenic protein build-up in the nucleus due to the disturbance in nuclear transport can also boost tumor growth and cell proliferation. In this study, we performed bioinformatic analyses of 23 key nuclear transport receptors using genomic and transcriptomic data from pancancer and head and neck squamous cell carcinoma (HNSCC) datasets from The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia and found that the total alteration frequency of 23 nuclear transport receptors in 2691 samples of the PCAWG Consortium was 42.1% and a high levels of genetic alterations was significantly associated with poor overall survival. Amplification was the most common type of genetic alterations, and results in the overexpression of nuclear transport receptors in HNSCC compared to normal tissues. Furthermore, our study revealed that seven out of eight cell cycle genes (CDK1, CDK2, CDK4, CDK6, CCNA1, CCNB1, and CCNE2) were significantly and positively correlated with nuclear transport receptor genes in TCGA pancancer and CCLE datasets. Additionally, functional enrichment analysis showed that nuclear transport receptor genes were mainly enriched in the adhesion junction, cell cycle, ERBB, MAPK, MTOR and WNT signaling pathways.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de Cabeza y Cuello Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de Cabeza y Cuello Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: Japón