Your browser doesn't support javascript.
loading
Identification of Root Canal Morphology in Fused-rooted Mandibular Second Molars From X-ray Images Based on Deep Learning.
Wu, Weiwei; Chen, Surong; Chen, Pan; Chen, Min; Yang, Yan; Gao, Yuan; Hu, Jingyu; Ma, Jingzhi.
Afiliación
  • Wu W; Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Chen S; Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Chen P; Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Chen M; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
  • Yang Y; Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Gao Y; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
  • Hu J; Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address: 2014tj0116@hust.edu.cn.
  • Ma J; Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address: majingzhi@hust.edu.cn.
J Endod ; 2024 May 29.
Article en En | MEDLINE | ID: mdl-38821263
ABSTRACT

INTRODUCTION:

Understanding the intricate anatomical morphology of fused-rooted mandibular second molars (MSMs) is essential for root canal treatment. The present study utilized a deep learning approach to identify the three-dimensional root canal morphology of MSMs from two-dimensional X-ray images.

METHODS:

A total of 271 fused-rooted MSMs were included in the study. Micro-computed tomography reconstruction images and two-dimensional X-ray projection images were obtained. The ground truth of three-dimensional root canal morphology was determined through micro-computed tomography images, which were classified into merging, symmetrical, and asymmetrical types. To amplify the X-ray image dataset, traditional augmentation techniques from the python package Augmentor and a multiangle projection method were employed. Identification of root canal morphology was conducted using the pretrained VGG19, ResNet18, ResNet50, and EfficientNet-b5 on X-ray images. The classification results from convolutional neural networks (CNNs) were then compared with those performed by endodontic residents.

RESULTS:

The multiangle projection augmentation method outperformed the traditional approach in all CNNs except for EfficientNet-b5. ResNet18 combined with the multiangle projection method outperformed all other combinations, with an overall accuracy of 79.25%. In specific classifications, accuracies of 81.13%, 86.79%, and 90.57% were achieved for merging, symmetrical, and asymmetrical types, respectively. Notably, CNNs surpassed endodontic residents in classification performance; the average accuracy for endodontic residents was only 60.38% (P < .05).

CONCLUSIONS:

CNNs were more effective than endodontic residents in identifying the three-dimensional root canal morphology of MSMs. The result indicates that CNNs possess the capacity to employ two-dimensional images effectively in aiding three-dimensional diagnoses.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Endod Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Endod Año: 2024 Tipo del documento: Article País de afiliación: China