Your browser doesn't support javascript.
loading
Application of Electro-Activated Dissociation Fragmentation Technique to Identifying Glucuronidation and Oxidative Metabolism Sites of Vepdegestrant by Liquid Chromatography-High Resolution Mass Spectrometry.
He, Yifei; Hou, Pengyi; Long, Zhimin; Zheng, Yuandong; Tang, Chongzhuang; Jones, Elliott; Diao, Xingxing; Zhu, Mingshe.
Afiliación
  • He Y; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd.,
  • Hou P; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd.,
  • Long Z; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd.,
  • Zheng Y; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd.,
  • Tang C; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd.,
  • Jones E; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd.,
  • Diao X; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd.,
  • Zhu M; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd.,
Drug Metab Dispos ; 52(7): 634-643, 2024 Jun 17.
Article en En | MEDLINE | ID: mdl-38830773
ABSTRACT
Drug metabolite identification is an integrated part of drug metabolism and pharmacokinetics studies in drug discovery and development. Definitive identification of metabolic modification sides of test compounds such as screening metabolic soft spots and supporting metabolite synthesis are often required. Currently, liquid chromatography-high resolution mass spectrometry is the dominant analytical platform for metabolite identification. However, the interpretation of product ion spectra generated by commonly used collision-induced disassociation (CID) and higher-energy collisional dissociation (HCD) often fails to identify locations of metabolic modifications, especially glucuronidation. Recently, a ZenoTOF 7600 mass spectrometer equipped with electron-activated dissociation (EAD-HRMS) was introduced. The primary objective of this study was to apply EAD-HRMS to identify metabolism sites of vepdegestrant (ARV-471), a model compound that consists of multiple functional groups. ARV-471 was incubated in dog liver microsomes and 12 phase I metabolites and glucuronides were detected. EAD generated unique product ions via orthogonal fragmentation, which allowed for accurately determining the metabolism sites of ARV-471, including phenol glucuronidation, piperazine N-dealkylation, glutarimide hydrolysis, piperidine oxidation, and piperidine lactam formation. In contrast, CID and HCD spectral interpretation failed to identify modification sites of three O-glucuronides and three phase I metabolites. The results demonstrated that EAD has significant advantages over CID and HCD in definitive structural elucidation of glucuronides and phase I metabolites although the utility of EAD-HRMS in identifying various types of drug metabolites remains to be further evaluated. SIGNIFICANCE STATEMENT Definitive identification of metabolic modification sites by liquid chromatography-high resolution mass spectrometry is highly needed in drug metabolism research, such as screening metabolic soft spots and supporting metabolite synthesis. However, commonly used collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) fragmentation techniques often fail to provide critical information for definitive structural elucidation. In this study, the electron-activated dissociation (EAD) was applied to identifying glucuronidation and oxidative metabolism sites of vepdegestrant, which generated significantly better results than CID and HCD.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Microsomas Hepáticos / Glucurónidos Límite: Animals Idioma: En Revista: Drug Metab Dispos Asunto de la revista: FARMACOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Microsomas Hepáticos / Glucurónidos Límite: Animals Idioma: En Revista: Drug Metab Dispos Asunto de la revista: FARMACOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos