Your browser doesn't support javascript.
loading
Development and external validation of a machine learning model for the prediction of persistent acute kidney injury stage 3 in multi-centric, multi-national intensive care cohorts.
Zappalà, Simone; Alfieri, Francesca; Ancona, Andrea; Taccone, Fabio Silvio; Maviglia, Riccardo; Cauda, Valentina; Finazzi, Stefano; Dell'Anna, Antonio Maria.
Afiliación
  • Zappalà S; U-Care Medical srl, Corso Castelfidardo 30A, 10129, Turin, Italy.
  • Alfieri F; U-Care Medical srl, Corso Castelfidardo 30A, 10129, Turin, Italy.
  • Ancona A; U-Care Medical srl, Corso Castelfidardo 30A, 10129, Turin, Italy.
  • Taccone FS; Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium.
  • Maviglia R; Department of Anesthesia, Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy.
  • Cauda V; U-Care Medical srl, Corso Castelfidardo 30A, 10129, Turin, Italy.
  • Finazzi S; Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy.
  • Dell'Anna AM; Clinical Data Science Laboratory, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, 24126, Bergamo, BG, Italy.
Crit Care ; 28(1): 189, 2024 06 04.
Article en En | MEDLINE | ID: mdl-38834995
ABSTRACT

BACKGROUND:

The aim of this retrospective cohort study was to develop and validate on multiple international datasets a real-time machine learning model able to accurately predict persistent acute kidney injury (AKI) in the intensive care unit (ICU).

METHODS:

We selected adult patients admitted to ICU classified as AKI stage 2 or 3 as defined by the "Kidney Disease Improving Global Outcomes" criteria. The primary endpoint was the ability to predict AKI stage 3 lasting for at least 72 h while in the ICU. An explainable tree regressor was trained and calibrated on two tertiary, urban, academic, single-center databases and externally validated on two multi-centers databases.

RESULTS:

A total of 7759 ICU patients were enrolled for analysis. The incidence of persistent stage 3 AKI varied from 11 to 6% in the development and internal validation cohorts, respectively and 19% in external validation cohorts. The model achieved area under the receiver operating characteristic curve of 0.94 (95% CI 0.92-0.95) in the US external validation cohort and 0.85 (95% CI 0.83-0.88) in the Italian external validation cohort.

CONCLUSIONS:

A machine learning approach fed with the proper data pipeline can accurately predict onset of Persistent AKI Stage 3 during ICU patient stay in retrospective, multi-centric and international datasets. This model has the potential to improve management of AKI episodes in ICU if implemented in clinical practice.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Lesión Renal Aguda / Aprendizaje Automático / Unidades de Cuidados Intensivos Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Crit Care Año: 2024 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Lesión Renal Aguda / Aprendizaje Automático / Unidades de Cuidados Intensivos Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Crit Care Año: 2024 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido