Your browser doesn't support javascript.
loading
Antibiotic-free production of sucrose isomerase in Bacillus subtilis by genome integration.
Li, Mingyu; Xu, Ming; Bai, Xinrui; Wan, Xiang; Zhao, Meng; Li, Xianzhen; Chen, Xiaoyi; Wang, Conggang; Yang, Fan.
Afiliación
  • Li M; School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
  • Xu M; School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
  • Bai X; School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
  • Wan X; School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
  • Zhao M; School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
  • Li X; School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
  • Chen X; School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
  • Wang C; School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China. wangcg@dlpu.edu.cn.
  • Yang F; School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China. yang_fan@dlpu.edu.cn.
Biotechnol Lett ; 46(5): 781-789, 2024 Oct.
Article en En | MEDLINE | ID: mdl-38847981
ABSTRACT
Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose to form isomaltulose, a valuable functional sugar widely used in the food industry. However, the lack of safe and efficient heterologous expression systems hinders SIase production and application. In this study, we achieved antibiotic-free SIase expression in Bacillus subtilis through genome integration. Using CRISPR/Cas9 system, SIase expression cassettes were integrated into various genomic loci, including amyE and ctc, both individually and in combination, resulting in single-copy and muti-copy integration strains. Engineered strains with a maltose-inducible promoter effectively expressed and secreted SIase. Notably, multi-copy strain exhibited enhanced SIase production, achieving 4.4 U/mL extracellular activity in shake flask cultivations. Furthermore, crude enzyme solution from engineered strain transformed high concentrations sucrose into high yields of isomaltulose, reaching a maximum yield of 94.6%. These findings demonstrate antibiotic-free SIase production in B. subtilis via genome integration, laying the foundation for its industrial production and application.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacillus subtilis / Glucosiltransferasas / Isomaltosa Idioma: En Revista: Biotechnol Lett Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacillus subtilis / Glucosiltransferasas / Isomaltosa Idioma: En Revista: Biotechnol Lett Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos