Your browser doesn't support javascript.
loading
Understanding the Role of Imide-Based Salts and Borate-Based Additives for Safe and High-Performance Glyoxal-Based Electrolytes in Ni-Rich NMC811 Cathodes for Li-Ion Batteries.
Klein, Michel; Binder, Markus; Kozelj, Matjaz; Perini, Adriano; Gouveia, Tom; Diemant, Thomas; Schür, Annika; Brutti, Sergio; Bodo, Enrico; Bresser, Dominic; Gómez-Urbano, Juan Luis; Balducci, Andrea.
Afiliación
  • Klein M; Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany.
  • Binder M; Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich-Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany.
  • Kozelj M; Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081, Ulm, Germany.
  • Perini A; Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.
  • Gouveia T; Solvionic, 11 Chemin des Silos, Toulouse, 31100, France.
  • Diemant T; Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy.
  • Schür A; Solvionic, 11 Chemin des Silos, Toulouse, 31100, France.
  • Brutti S; Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081, Ulm, Germany.
  • Bodo E; Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.
  • Bresser D; Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081, Ulm, Germany.
  • Gómez-Urbano JL; Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.
  • Balducci A; Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy.
Small ; : e2401610, 2024 Jun 10.
Article en En | MEDLINE | ID: mdl-38856970
ABSTRACT
Herein, the design of novel and safe electrolyte formulations for high-voltage Ni-rich cathodes is reported. The solvent mixture comprising 1,1,2,2-tetraethoxyethane and propylene carbonate not only displays good transport properties, but also greatly enhances the overall safety of the cell thanks to its low flammability. The influence of the conducting salts, that is, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI), and of the additives lithium bis(oxalato)borate (LiBOB) and lithium difluoro(oxalato)borate (LiDFOB) is examined. Molecular dynamics simulations are carried out to gain insights into the local structure of the different electrolytes and the lithium-ion coordination. Furthermore, special emphasis is placed on the film-forming abilities of the salts to suppress the anodic dissolution of the aluminum  current collector and to create a stable cathode electrolyte interphase (CEI). In this regard, the borate-based additives significantly alleviate the intrinsic challenges associated with the use of LiTFSI and LiFSI salts. It is worth remarking that a superior cathode performance is achieved by using the LiFSI/LiDFOB electrolyte, displaying a high specific capacity of 164 mAh g-1 at 6 C and ca. 95% capacity retention after 100 cycles at 1 C. This is attributed to the rich chemistry of the generated CEI layer, as confirmed by ex situ X-ray photoelectron spectroscopy.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Alemania