Your browser doesn't support javascript.
loading
Improved assembly of the Pungitius pungitius reference genome.
Wang, Dandan; Rastas, Pasi; Yi, Xueling; Löytynoja, Ari; Kivikoski, Mikko; Feng, Xueyun; Reid, Kerry; Merilä, Juha.
Afiliación
  • Wang D; Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong 000000, Hong Kong SAR.
  • Rastas P; Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland.
  • Yi X; Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong 000000, Hong Kong SAR.
  • Löytynoja A; Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland.
  • Kivikoski M; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland.
  • Feng X; Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland.
  • Reid K; Department of Computer Science, University of Helsinki, Helsinki FI-00014, Finland.
  • Merilä J; Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland.
G3 (Bethesda) ; 2024 Jun 11.
Article en En | MEDLINE | ID: mdl-38861393
ABSTRACT
The nine-spined stickleback (Pungitius pungitius) has been increasingly used as a model system in studies of local adaptation and sex chromosome evolution but its current reference genome assembly is far from perfect, lacking distinct sex chromosomes. We generated an improved assembly of the nine-spined stickleback reference genome (98.3% BUSCO completeness) with the aid of linked-read mapping. While the new assembly (v8) was of similar size as the earlier version (v7), we were able to assign 4.4 times more contigs to the linkage groups and improve the contiguity of the genome. Moreover, the new assembly contains a ∼22.8 Mb Y-linked scaffold (LG22) consisting mainly of previously assigned X-contigs, putative Y-contigs, putative centromere contigs and highly repetitive elements. The male individual showed an even mapping depth on LG12 (pseudo X chromosome) and LG22 (Y-linked scaffold) in the segregating sites, suggesting near-pure X and Y representation in the v8 assembly. A total of 26,803 genes were annotated, and about 33% of the assembly was found to consist of repetitive elements. The high proportion of repetitive elements in LG22 (53.10%) suggests it can be difficult to assemble the complete sequence of the species' Y chromosome. Nevertheless, the new assembly is a significant improvement over the previous version and should provide a valuable resource for genomic studies of stickleback fishes.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: G3 (Bethesda) Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: G3 (Bethesda) Año: 2024 Tipo del documento: Article