Your browser doesn't support javascript.
loading
Free essential amino acid feeding improves endurance during resistance training via DRP1-dependent mitochondrial remodelling.
Jang, Jiwoong; Kim, Yeongmin; Song, Taejeong; Park, Sanghee; Kim, Hee-Joo; Koh, Jin-Ho; Cho, Yoonil; Park, Shi-Young; Sadayappan, Sakthivel; Kwak, Hyo-Bum; Wolfe, Robert R; Kim, Il-Young; Choi, Cheol Soo.
Afiliación
  • Jang J; Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.
  • Kim Y; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.
  • Song T; Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon, Korea.
  • Park S; Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.
  • Kim HJ; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea.
  • Koh JH; Department of Internal Medicine, Division of Cardiovascular Health and Disease, Center for Cardiovascular Research, University of Cincinnati, Cincinnati, Ohio, USA.
  • Cho Y; Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.
  • Park SY; Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Korea.
  • Sadayappan S; Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.
  • Kwak HB; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea.
  • Wolfe RR; Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.
  • Kim IY; Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Korea.
  • Choi CS; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.
Article en En | MEDLINE | ID: mdl-38881251
ABSTRACT

BACKGROUND:

Loss of muscle strength and endurance with aging or in various conditions negatively affects quality of life. Resistance exercise training (RET) is the most powerful means to improve muscle mass and strength, but it does not generally lead to improvements in endurance capacity. Free essential amino acids (EAAs) act as precursors and stimuli for synthesis of both mitochondrial and myofibrillar proteins that could potentially confer endurance and strength gains. Thus, we hypothesized that daily consumption of a dietary supplement of nine free EAAs with RET improves endurance in addition to the strength gains by RET.

METHODS:

Male C57BL6J mice (9 weeks old) were assigned to control (CON), EAA, RET (ladder climbing, 3 times a week), or combined treatment of EAA and RET (EAA + RET) groups. Physical functions focusing on strength or endurance were assessed before and after the interventions. Several analyses were performed to gain better insight into the mechanisms by which muscle function was improved. We determined cumulative rates of myofibrillar and mitochondrial protein synthesis using 2H2O labelling and mass spectrometry; assessed ex vivo contractile properties and in vitro mitochondrial function, evaluated neuromuscular junction (NMJ) stability, and assessed implicated molecular singling pathways. Furthermore, whole-body and muscle insulin sensitivity along with glucose metabolism, were evaluated using a hyperinsulinaemic-euglycaemic clamp.

RESULTS:

EAA + RET increased muscle mass (10%, P < 0.05) and strength (6%, P < 0.05) more than RET alone, due to an enhanced rate of integrated muscle protein synthesis (19%, P < 0.05) with concomitant activation of Akt1/mTORC1 signalling. Muscle quality (muscle strength normalized to mass) was improved by RET (i.e., RET and EAA + RET) compared with sedentary groups (10%, P < 0.05), which was associated with increased AchR cluster size and MuSK activation (P < 0.05). EAA + RET also increased endurance capacity more than RET alone (26%, P < 0.05) by increasing both mitochondrial protein synthesis (53%, P < 0.05) and DRP1 activation (P < 0.05). Maximal respiratory capacity increased (P < 0.05) through activation of the mTORC1-DRP1 signalling axis. These favourable effects were accompanied by an improvement in basal glucose metabolism (i.e., blood glucose concentrations and endogenous glucose production vs. CON, P < 0.05).

CONCLUSIONS:

Combined treatment with balanced free EAAs and RET may effectively promote endurance capacity as well as muscle strength through increased muscle protein synthesis, improved NMJ stability, and enhanced mitochondrial dynamics via mTORC1-DRP1 axis activation, ultimately leading to improved basal glucose metabolism.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Cachexia Sarcopenia Muscle Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Cachexia Sarcopenia Muscle Año: 2024 Tipo del documento: Article