Your browser doesn't support javascript.
loading
Revealing the Electro-oxidation Mechanism of 5-Aminotetrazole on Nickel-Based Oxides and Synthesizing 5,5'-Azotetrazolate Salts.
Qin, Yaqi; Yang, Feng; Chen, Zhong; Lu, Ming; Wang, Pengcheng.
Afiliación
  • Qin Y; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Yang F; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Chen Z; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore.
  • Lu M; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Wang P; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Inorg Chem ; 63(26): 12299-12308, 2024 Jul 01.
Article en En | MEDLINE | ID: mdl-38888107
ABSTRACT
With the gradual expansion of the application of organic electromechanical synthesis in the field of energetic materials, it is necessary to explore deeply the mechanisms behind the organic electromechanical oxidation of energetic materials in order to develop efficient electrocatalysts. Electrochemical synthesis of 5,5'-azotetrazolate (ZT) salts is not only environmentally friendly and efficient but also can replace oxygen evolution reaction (OER) combined with hydrogen production, significantly reducing the battery voltage of overall water splitting (OWS) and achieving low energy consumption hydrogen production. Here, we prepared the Co-modified nickel-based oxide electrodes (Ni3-xCoO4/carbon cloth (CC), x = 1, 2) as a medium to reveal the oxidative coupling mechanism of 5-aminotetrazole (5-AT). Experimental and theoretical calculations verified that Ni-catalyzed oxidative coupling of 5-AT is a proton-coupled electron transfer (PCET) process, including electron transfer of electrocatalytic intermediates (Ni2+-O + OH- = Ni3+-O(OH) + e-) and spontaneous dehydrogenation process (Ni3+-O(OH) + X-H = Ni2+-O + X•). The Ni3+-O(OH) is an extremely fast nonreducing electron transfer center that serves as a chemical oxidant to directly abstract hydrogen atoms from the 5-AT. Simultaneously, the synergistic effect of Co doping on the electric cloud around Ni causes the upshift of the d-band centers, which is conducive to the easier adsorption of OH*, forming the generation of active intermediate Ni3+-O(OH). Thus, Ni2CoO4/CC has higher Faraday efficiency (FE) and yield for the oxidation reaction of 5-AT, with a yield of approximately 72.3% after electrolysis at 1.7 V vs reversible hydrogen electrode (RHE).

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2024 Tipo del documento: Article País de afiliación: China