Your browser doesn't support javascript.
loading
Automatic gait events detection with inertial measurement units: healthy subjects and moderate to severe impaired patients.
Voisard, Cyril; de l'Escalopier, Nicolas; Ricard, Damien; Oudre, Laurent.
Afiliación
  • Voisard C; Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, Gif-sur-Yvette, France. cyril.voisard@etu.u-paris.fr.
  • de l'Escalopier N; Service de Neurologie, Service de Santé des Armées, HIA Percy, Clamart, France. cyril.voisard@etu.u-paris.fr.
  • Ricard D; Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, Paris, France.
  • Oudre L; Service de Chirurgie Orthopédique, Traumatologique et Réparatrice des Membres, Service de Santé des Armées, HIA Percy, Clamart, France.
J Neuroeng Rehabil ; 21(1): 104, 2024 06 18.
Article en En | MEDLINE | ID: mdl-38890696
ABSTRACT

BACKGROUND:

Recently, the use of inertial measurement units (IMUs) in quantitative gait analysis has been widely developed in clinical practice. Numerous methods have been developed for the automatic detection of gait events (GEs). While many of them have achieved high levels of efficiency in healthy subjects, detecting GEs in highly degraded gait from moderate to severely impaired patients remains a challenge. In this paper, we aim to present a method for improving GE detection from IMU recordings in such cases.

METHODS:

We recorded 10-meter gait IMU signals from 13 healthy subjects, 29 patients with multiple sclerosis, and 21 patients with post-stroke equino varus foot. An instrumented mat was used as the gold standard. Our method detects GEs from filtered acceleration free from gravity and gyration signals. Firstly, we use autocorrelation and pattern detection techniques to identify a reference stride pattern. Next, we apply multiparametric Dynamic Time Warping to annotate this pattern from a model stride, in order to detect all GEs in the signal.

RESULTS:

We analyzed 16,819 GEs recorded from healthy subjects and achieved an F1-score of 100%, with a median absolute error of 8 ms (IQR [3-13] ms). In multiple sclerosis and equino varus foot cohorts, we analyzed 6067 and 8951 GEs, respectively, with F1-scores of 99.4% and 96.3%, and median absolute errors of 18 ms (IQR [8-39] ms) and 26 ms (IQR [12-50] ms).

CONCLUSIONS:

Our results are consistent with the state of the art for healthy subjects and demonstrate a good accuracy in GEs detection for pathological patients. Therefore, our proposed method provides an efficient way to detect GEs from IMU signals, even in degraded gaits. However, it should be evaluated in each cohort before being used to ensure its reliability.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esclerosis Múltiple Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: J Neuroeng Rehabil Asunto de la revista: ENGENHARIA BIOMEDICA / NEUROLOGIA / REABILITACAO Año: 2024 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esclerosis Múltiple Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: J Neuroeng Rehabil Asunto de la revista: ENGENHARIA BIOMEDICA / NEUROLOGIA / REABILITACAO Año: 2024 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido