Your browser doesn't support javascript.
loading
Macrophages exploit the mannose receptor and JAK-STAT1-MHC-II pathway to drive antigen presentation and the antimycobacterial immune response after BCG vaccination.
Zhang, Ying; Xu, Dandan; Nie, Qi; Wang, Jing; Fang, Dan; Xie, Yan; Xiong, Huang; Pan, Qin; Zhang, Xiao-Lian.
Afiliación
  • Zhang Y; Department of Immunology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Department of Allergy of Zhongnan Hospital and Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430071, China.
  • Xu D; State Key Laboratory of Virology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
  • Nie Q; Department of Immunology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Department of Allergy of Zhongnan Hospital and Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430071, China.
  • Wang J; State Key Laboratory of Virology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
  • Fang D; Department of Blood Transfusion, the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou 221116, China.
  • Xie Y; Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, China.
  • Xiong H; Department of Immunology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Department of Allergy of Zhongnan Hospital and Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430071, China.
  • Pan Q; State Key Laboratory of Virology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
  • Zhang XL; Department of Immunology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Department of Allergy of Zhongnan Hospital and Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430071, China.
Article en En | MEDLINE | ID: mdl-38894685
ABSTRACT
Tuberculosis (TB), caused by Mycobacterium tuberculosis ( M. tb), remains one of the leading causes of fatal infectious diseases worldwide. The only licensed vaccine, Mycobacterium bovis Bacillus Calmette-Guérin (BCG), has variable efficacy against TB in adults. Insufficiency of immune cell function diminishes the protective effects of the BCG vaccine. It is critical to clarify the mechanism underlying the antimycobacterial immune response during BCG vaccination. Macrophage mannose receptor (MR) is important for enhancing the uptake and processing of glycoconjugated antigens from pathogens for presentation to T cells, but the roles of macrophage MR in the BCG-induced immune response against M. tb are not yet clear. Here, we discover that macrophage MR deficiency impairs the antimycobacterial immune response in BCG-vaccinated mice. Mechanistically, macrophage MR triggers JAK-STAT1 signaling, which promotes antigen presentation via upregulated MHC-II and induces IL-12 production by macrophages, contributing to CD4 + T cell activation and IFN-γ production. MR deficiency in macrophages reduces the vaccine efficacy of BCG and increases susceptibility to M. tb H37Ra challenge in mice. Our results suggest that MR is critical for macrophage antigen presentation and the antimycobacterial immune response to BCG vaccination and offer valuable guidance for the preventive strategy of BCG immunization.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Acta Biochim Biophys Sin (Shanghai) Asunto de la revista: BIOFISICA / BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Acta Biochim Biophys Sin (Shanghai) Asunto de la revista: BIOFISICA / BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China