Your browser doesn't support javascript.
loading
A structure-based mechanism for initiation of AP-3 coated vesicle formation.
Begley, Matthew; Aragon, Mahira; Baker, Richard W.
Afiliación
  • Begley M; Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA.
  • Aragon M; New York Structural Biology Center; New York, NY 10027, USA.
  • Baker RW; Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA.
bioRxiv ; 2024 Jun 05.
Article en En | MEDLINE | ID: mdl-38895279
ABSTRACT
Adaptor protein complex 3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 is in a constitutively open, active conformation compared to the related AP-1 and AP-2 coat complexes, which are inactive until undergoing large conformational changes upon membrane recruitment. How AP-3 is regulated is therefore an open question. To understand the mechanism of AP-3 membrane recruitment and activation, we reconstituted the core of human AP-3 and determined multiple structures in the soluble and membrane-bound states using electron cryo-microscopy (cryo-EM). Similar to yeast AP-3, human AP-3 is in a constitutively open conformation, with the cargo-binding domain of the µ3 subunit conformationally free. To reconstitute AP-3 activation by the small GTPase Arf1, we used lipid nanodiscs to build Arf1-AP-3 complexes on membranes and determined three structures that show the stepwise conformational changes required for formation of AP-3 coated vesicles. First, membrane-recruitment is driven by one of two predicted Arf1 binding sites on AP-3. In this conformation, AP-3 is flexibly tethered to the membrane and its cargo binding domain remains conformationally dynamic. Second, cargo binding causes AP-3 to adopt a fixed position and rigidifies the complex, which stabilizes binding for a second Arf1 molecule. Finally, binding of the second Arf1 molecule provides the template for AP-3 dimerization, providing a glimpse into the first step of coat polymerization. We propose coat polymerization only occurs after cargo engagement, thereby linking cargo sorting with assembly of higher order coat structures. Additionally, we provide evidence for two amphipathic helices in AP-3, suggesting that AP-3 contributes to membrane deformation during coat assembly. In total, these data provide evidence for the first stages of AP-3 mediated vesicle coat assembly.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos