Your browser doesn't support javascript.
loading
Dual-mode biosensor using Tb-Cu MOF@Au nanoenzyme to effectively quench the photocurrent of Bi2O3/Bi2S3/AgBiS2 heterojunction and emit fluorescence for neuron-specific enolases detection.
Fu, Junqiang; Wu, Tingting; Kuang, Xuan; Xu, Kun; Ren, Xiang; Wu, Dan; Ma, Hongmin; Li, Faying; Liu, Lei; Wei, Qin.
Afiliación
  • Fu J; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
  • Wu T; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
  • Kuang X; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
  • Xu K; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
  • Ren X; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
  • Wu D; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
  • Ma H; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
  • Li F; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; School of Chemistry and Pharmaceutical E
  • Liu L; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China. Electronic address: liulei70919@126.com.
  • Wei Q; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan Un
Talanta ; 277: 126346, 2024 Sep 01.
Article en En | MEDLINE | ID: mdl-38897010
ABSTRACT
A novel dual-mode biosensor was constructed for the ultrasensitive detection of neuron-specific enolase (NSE), utilizing Tb-Cu MOF@Au nanozyme as the signal label to effectively quench the photoelectrochemical (PEC) signals of Bi2O3/Bi2S3/AgBiS2 composites and initiate fluorescent (FL) signals. First, Bi2O3/Bi2S3/AgBiS2 heterojunction with excellent photoelectric activity was selected as the substrate material to provide a stable photocurrent. The well-matched energy levels significantly enhanced the separation and transfer of photogenerated carriers. Second, a strategy of consuming ascorbic acid (AA) by Tb-Cu MOF@Au nanozyme was introduced to improve the sensitivity of the PEC/FL biosensor. Tb-Cu MOF@Au not only could catalyze the oxidation of AA, but the steric effect further reduced the contact of AA with the substrate. More importantly, in the presence of H2O2, a significant fluorescence was produced from Tb3+ sensitized by the oxidation products of AA. Based on the above strategies, a highly stable and sensitive dual-mode biosensor was proposed for accurate NSE determination. Third, the developed dual-mode biosensor demonstrated excellent performance in detecting NSE. In this study, the PEC method demonstrated a wide detection range from 0.00005 to 200 ng/mL with a low detection limit of 20 fg/mL. The FL method exhibited a linear range from 0.001 to 200 ng/mL with a detection limit of 0.65 pg/mL. The designed biosensor showed potential practical implications in the accurate detection of disease markers.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfopiruvato Hidratasa / Terbio / Bismuto / Técnicas Biosensibles / Cobre / Oro Límite: Humans Idioma: En Revista: Talanta Año: 2024 Tipo del documento: Article Pais de publicación: HOLANDA / HOLLAND / NETHERLANDS / NL / PAISES BAJOS / THE NETHERLANDS

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfopiruvato Hidratasa / Terbio / Bismuto / Técnicas Biosensibles / Cobre / Oro Límite: Humans Idioma: En Revista: Talanta Año: 2024 Tipo del documento: Article Pais de publicación: HOLANDA / HOLLAND / NETHERLANDS / NL / PAISES BAJOS / THE NETHERLANDS