Your browser doesn't support javascript.
loading
Molybdenum iron carbide-copper hybrid as efficient electrooxidation catalyst for oxygen evolution reaction and synthesis of cinnamaldehyde/benzalacetone.
Li, Jinzhou; Du, Lan'ge; Guo, Songtao; Chang, Jiuli; Wu, Dapeng; Jiang, Kai; Gao, Zhiyong.
Afiliación
  • Li J; School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
  • Du L; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, College of International Education, School of Env
  • Guo S; School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
  • Chang J; School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China. Electronic address: jiulic
  • Wu D; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, College of International Education, School of Env
  • Jiang K; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, College of International Education, School of Env
  • Gao Z; School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China. Electronic address: gaozhi
J Colloid Interface Sci ; 673: 616-627, 2024 Nov.
Article en En | MEDLINE | ID: mdl-38897063
ABSTRACT
Oxygen evolution reaction (OER) is the efficiency limiting half-reaction in water electrolysis for green hydrogen production due to the 4-electron multistep process with sluggish kinetics. The electrooxidation of thermodynamically more favorable organics accompanied by CC coupling is a promising way to synthesize value-added chemicals instead of OER. Efficient catalyst is of paramount importance to fulfill such a goal. Herein, a molybdenum iron carbide-copper hybrid (Mo2C-FeCu) was designed as anodic catalyst, which demonstrated decent OER catalytic capability with low overpotential of 238 mV at response current density of 10 mA cm-2 and fine stability. More importantly, the Mo2C-FeCu enabled electrooxidation assisted aldol condensation of phenylcarbinol with α-H containing alcohol/ketone in weak alkali electrolyte to selective synthesize cinnamaldehyde/benzalacetone at reduced potential. The hydroxyl and superoxide intermediate radicals generated at high potential are deemed to be responsible for the electrooxidation of phenylcarbinol and aldol condensation reactions to afford cinnamaldehyde/benzalacetone. The current work showcases an electrochemical-chemical combined CC coupling reaction to prepare organic chemicals, we believe more widespread organics can be synthesized by tailored electrochemical reactions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos