Your browser doesn't support javascript.
loading
Electric field modulated electronic, thermoelectric and transport properties of 2D tetragonal silicene and its nanoribbons.
Mondal, Niladri Sekhar; Mondal, Rajkumar; Bedamani Singh, N; Nath, Subhadip; Jana, Debnarayan.
Afiliación
  • Mondal NS; Department of Physics, Haldia Government College, Haldia 721657, India.
  • Mondal R; Department of Physics, Nabadwip Vidyasagar College, Nabadwip 741302, India.
  • Bedamani Singh N; Department of Physics, Nagaland University, Nagaland 797004, India.
  • Nath S; Department of Physics, Krishnagar Government College, Krishnagar 741101, India.
  • Jana D; Department of Physics, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
J Phys Condens Matter ; 36(38)2024 Jun 27.
Article en En | MEDLINE | ID: mdl-38897193
ABSTRACT
Using both first principles and analytical approaches, we investigate the role of a transverse electric field in tuning the electrical, thermoelectric, optical and transport properties of a buckled tetragonal silicene (TS) structure. The transverse electric field transforms the linear spectrum to parabolic at the Fermi level and opens a band gap. The gap is similar at the two Dirac points present in the irreducible Brillouin zone of the TS structure and increases in proportion to the applied field strength. However, a sufficiently strong electric field converts the system into a metallic one. A comparable band opening is also seen in the TS nanoribbons. Electric field-induced semiconducting nature improves its thermoelectric properties. Estimated Debye temperature reveals its superiority over graphene in terms of thermoelectric performance. The optical response of the structures is very asymmetric. Large values of imaginary and real components of the dielectric function are seen. The absorption frequency lies in the UV region. Plasma frequencies are identified and are red-shifted with the applied field. The current-voltage characteristics of the symmetric type nanoribbons show oscillation in current whereas the voltage-rectifying capability of anti-symmetric type nanoribbons under a transverse electric field is interesting.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido