Your browser doesn't support javascript.
loading
Attached indigenous microalgal-bacterial consortium with greater stress-resistance facilitated recovery of integrated fixed-film system after experiencing short-term stagnation inhibition.
Chen, Zhipeng; Qiu, Shuang; Xie, Yue; Li, Mengting; Bi, Qian; He, Zhaoming; Ge, Shijian.
Afiliación
  • Chen Z; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Qiu S; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Xie Y; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Li M; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Bi Q; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • He Z; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Ge S; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China. Electronic address: geshijian1221@njust.edu.cn.
Bioresour Technol ; 406: 130997, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38897550
ABSTRACT
Stability of integrated fixed-film indigenous microalgal-bacterial consortium (IF-IMBC) requires further investigation. This study focused on the influence of short-term stagnation (STS), caused by influent variations or equipment maintenance, on IF-IMBC. Results showed that the IF-IMBC system experienced initial inhibition followed by subsequent recovery during STS treatment. Enhanced organics utilization was believed to contribute to system recovery. It is proposed that the attached IMBC possessed greater stress resistance. On the one hand, a higher increase in bacteria potentially participating in organic degradation was observed. Moreover, the dominant eukaryotic species significantly decreased in suspended IMBC while its abundance remained stable in the attached state. On the other hand, increased abundance for most functional enzymes was primarily observed in the attached bacteria. This fundamental research aims to bridge the knowledge gap regarding the response of IMBC to variations in operational conditions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Microalgas / Consorcios Microbianos Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Microalgas / Consorcios Microbianos Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido