Your browser doesn't support javascript.
loading
Therapeutic Efficacy of Interferon-Gamma and Hypoxia-Primed Mesenchymal Stromal Cells and Their Extracellular Vesicles: Underlying Mechanisms and Potentials in Clinical Translation.
Tan, Yu Ling; Al-Masawa, Maimonah Eissa; Eng, Sue Ping; Shafiee, Mohamad Nasir; Law, Jia Xian; Ng, Min Hwei.
Afiliación
  • Tan YL; Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia.
  • Al-Masawa ME; Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia.
  • Eng SP; NK Biocell Sdn. Bhd, Unit 1-22A, 1st Floor Pusat Perdagangan Berpadu (United Point), No.10, Jalan Lang Emas, Kuala Lumpur 51200, Malaysia.
  • Shafiee MN; Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
  • Law JX; Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia.
  • Ng MH; Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia.
Biomedicines ; 12(6)2024 Jun 20.
Article en En | MEDLINE | ID: mdl-38927577
ABSTRACT
Multipotent mesenchymal stromal cells (MSCs) hold promises for cell therapy and tissue engineering due to their self-renewal and differentiation abilities, along with immunomodulatory properties and trophic factor secretion. Extracellular vesicles (EVs) from MSCs offer similar therapeutic effects. However, MSCs are heterogeneous and lead to variable outcomes. In vitro priming enhances MSC performance, improving immunomodulation, angiogenesis, proliferation, and tissue regeneration. Various stimuli, such as cytokines, growth factors, and oxygen tension, can prime MSCs. Two classical priming methods, interferon-gamma (IFN-γ) and hypoxia, enhance MSC immunomodulation, although standardized protocols are lacking. This review discusses priming protocols, highlighting the most commonly used concentrations and durations, along with mechanisms and in vivo therapeutics effects of primed MSCs and their EVs. The feasibility of up-scaling their production was also discussed. The review concluded that priming with IFN-γ or hypoxia (alone or in combination with other factors) boosted the immunomodulation capability of MSCs and their EVs, primarily via the JAK/STAT and PI3K/AKT and Leptin/JAK/STAT and TGF-ß/Smad signalling pathways, respectively. Incorporating priming in MSC and EV production enables translation into cell-based or cell-free therapies for various disorders.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biomedicines Año: 2024 Tipo del documento: Article País de afiliación: Malasia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biomedicines Año: 2024 Tipo del documento: Article País de afiliación: Malasia