Your browser doesn't support javascript.
loading
Separation of Damage Mechanisms in Full Forward Rod Extruded Case-Hardening Steel 16MnCrS5 Using 3D Image Segmentation.
Lingnau, Lars A; Heermant, Johannes; Otto, Johannes L; Donnerbauer, Kai; Sauer, Lukas M; Lücker, Lukas; Macias Barrientos, Marina; Walther, Frank.
Afiliación
  • Lingnau LA; Chair of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.
  • Heermant J; Chair of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.
  • Otto JL; Chair of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.
  • Donnerbauer K; Chair of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.
  • Sauer LM; Chair of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.
  • Lücker L; Chair of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.
  • Macias Barrientos M; Chair of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.
  • Walther F; Chair of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.
Materials (Basel) ; 17(12)2024 Jun 20.
Article en En | MEDLINE | ID: mdl-38930392
ABSTRACT
In general, formed components are lightweight as well as highly economic and resource efficient. However, forming-induced ductile damage, which particularly affects the formation and growth of pores, has not been considered in the design of components so far. Therefore, an evaluation of forming-induced ductile damage would enable an improved design and take better advantage of the lightweight nature as it affects the static and dynamic mechanical material properties. To quantify the amount, morphology and distribution of the pores, advanced scanning electron microscopy (SEM) methods such as scanning transmission electron microscopy (STEM) and electron channeling contrast imaging (ECCI) were used. Image segmentation using a deep learning algorithm was applied to reproducibly separate the pores from inclusions such as manganese sulfide inclusions. This was achieved via layer-by-layer ablation of the case-hardened steel 16MnCrS5 (DIN 1.7139, AISI/SAE 5115) with a focused ion beam (FIB). The resulting images were reconstructed in a 3D model to gain a mechanism-based understanding beyond the previous 2D investigations.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suiza