Your browser doesn't support javascript.
loading
Platinum-ruthenium-iron embedded in nitrogen-doped ordered mesoporous carbon for adrenaline electrochemical sensing study.
Zhao, Yuxin; Zhang, Tong; Liu, Fangxun; Zheng, Man; Shi, Kun; Yang, Xin; Zhao, Pinyi; Li, Xin; Zhang, Yufan; Wang, Huan.
Afiliación
  • Zhao Y; Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Ministry of Education, College of Chemis
  • Zhang T; Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Ministry of Education, College of Chemis
  • Liu F; Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Ministry of Education, College of Chemis
  • Zheng M; Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Ministry of Education, College of Chemis
  • Shi K; Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Ministry of Education, College of Chemis
  • Yang X; Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Ministry of Education, College of Chemis
  • Zhao P; Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Ministry of Education, College of Chemis
  • Li X; Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Ministry of Education, College of Chemis
  • Zhang Y; Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Ministry of Education, College of Chemis
  • Wang H; Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Ministry of Education, College of Chemis
Mikrochim Acta ; 191(7): 428, 2024 Jun 28.
Article en En | MEDLINE | ID: mdl-38940957
ABSTRACT
A novel nitrogen-doped ordered mesoporous carbon (OMC) pore-embedded growth Pt-Ru-Fe nanoparticles (Pt1-Ru7.5-Fex@N-OMCs) composite was designed and synthesized for the first time. SBA-15 was used as a template, and dopamine was used as a carbon and nitrogen source and metal linking reagent. The oxidative self-polymerization reaction of dopamine was utilized to polymerize dopamine into two-dimensional ordered SBA-15 template pores. Iron porphyrin was introduced as an iron source at the same time as polymerization of dopamine, which was introduced inside and outside the pores using dopamine-metal linkage. Carbonization of polydopamine, nitrogen doping and iron nanoparticle formation were achieved by one-step calcination. Then the templates were etched to form Fex@N-OMCs, and finally the Pt1-Ru7.5-Fex@N-OMCs composites were stabilized by the successful introduction of platinum-ruthenium nanoparticles through the substitution reaction. The composite uniformly embeds the transition metal nanoparticles inside the OMC pores with high specific surface area, which limits the size of the metal nanoparticles inside the pores. At the same time, the metal nanoparticles are also loaded onto the surface of the OMCs, realizing the uniform loading of metal nanoparticles both inside and outside the pores. This enhances the active sites of the composite, promotes the mass transfer process inside and outside the pores, and greatly enhances the electrocatalytic performance of the catalyst. The material shows high electrocatalytic performance for adrenaline, which is characterized by a wide linear range, high sensitivity and low detection limit, and can realize the detection of actual samples.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Mikrochim Acta Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Mikrochim Acta Año: 2024 Tipo del documento: Article