Your browser doesn't support javascript.
loading
Search for an antiferromagnetic Weyl semimetal in (MnTe)m(Sb2Te3)nand (MnTe)m(Bi2Te3)nsuperlattices.
Boulton, James A; Kim, Ki Wook.
Afiliación
  • Boulton JA; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, United States of America.
  • Kim KW; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, United States of America.
J Phys Condens Matter ; 36(40)2024 Jul 08.
Article en En | MEDLINE | ID: mdl-38942000
ABSTRACT
The interaction between topology and magnetism can lead to novel topological materials including Chern insulators, axion insulators, and Dirac and Weyl semimetals. In this work, a family of van der Waals layered materials using MnTe and Sb2Te3or Bi2Te3superlattices as building blocks are systematically examined in a search for antiferromagnetic Weyl semimetals, preferably with a simple node structure. The approach is based on controlling the strength of the exchange interaction as a function of layer composition to induce the phase transition between the topological and the normal insulators. Our calculations, utilizing a combination of first-principles density functional theory and tight-binding analyses based on maximally localized Wannier functions, clearly indicate a promising candidate for a type-I magnetic Weyl semimetal. This centrosymmetric material, Mn10Sb8Te22(or (MnTe)m(Sb2Te3)nwithm = 10 andn = 4), shows ferromagnetic intralayer and antiferromagnetic interlayer interactions in the antiferromagnetic ground state. The obtained electronic bandstructure also exhibits a single pair of Weyl points in the spin-split bands consistent with a Weyl semimetal. The presence of Weyl nodes is further verified with Berry curvature, Wannier charge center, and surface state (i.e. Fermi arc) calculations. Other combinations of the MnSbTe-family materials are found to be antiferromagnetic topological or normal insulators on either side of the MnSb ratio, respectively, illustrating the topological phase transition as anticipated. A similar investigation in the homologous (MnTe)m(Bi2Te3)nsystem produces mostly nontrivial antiferromagnetic insulators due to the strong spin-orbit coupling. When realized, the antiferromagnetic Weyl semimetals in the simplest form (i.e. a single pair of Weyl nodes) are expected to provide a promising candidate for low-power spintronic applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos