Your browser doesn't support javascript.
loading
Recent advances in transdermal insulin delivery technology: A review.
Li, Heng; Shi, Yanbin; Ding, Xinbing; Zhen, Chengdong; Lin, Guimei; Wang, Fei; Tang, Bingtao; Li, Xuelin.
Afiliación
  • Li H; School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
  • Shi Y; School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
  • Ding X; School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China. Electronic address: 10431210075@stu.qlu.edu.cn.
  • Zhen C; School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
  • Lin G; School of Pharmaceutical Science, Shandong University, Jinan 250012, China. Electronic address: guimeilin@sdu.edu.cn.
  • Wang F; School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China. Electronic address: wf@qlu.edu.cn.
  • Tang B; School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
  • Li X; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
Int J Biol Macromol ; 274(Pt 2): 133452, 2024 Jun 26.
Article en En | MEDLINE | ID: mdl-38942414
ABSTRACT
Transdermal drug delivery refers to the administration of drugs through the skin, after which the drugs can directly act on or circulate through the body to the target organs or cells and avoid the first-pass metabolism in the liver and kidneys experienced by oral drugs, reducing the risk of drug poisoning. From the initial singular approach to transdermal drug delivery, there has been a shift toward combining multiple methods to enhance drug permeation efficiency and address the limitations of individual approaches. Technological advancements have also improved the accuracy of drug delivery. Optimizing insulin itself also enables its long-term release via needle-free injectors. In this review, the diverse transdermal delivery methods employed in insulin therapy and their respective advantages and limitations are discussed. By considering factors such as the principles of transdermal penetration, drug delivery efficiency, research progress, synergistic innovations among different methods, patient compliance, skin damage, and posttreatment skin recovery, a comprehensive evaluation is presented, along with prospects for potential novel combinatorial approaches. Furthermore, as insulin is a macromolecular drug, insights gained from its transdermal delivery may also serve as a valuable reference for the use of other macromolecular drugs for treatment.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China