Your browser doesn't support javascript.
loading
Ethylene is the key phytohormone to enhance arsenic resistance in Arabidopsis thaliana.
Zou, Yiping; Liu, Yaping; Li, Wei; Cao, Qingqing; Wang, Xue; Hu, Zhubing; Cai, Qingsheng; Lou, Laiqing.
Afiliación
  • Zou Y; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Liu Y; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Li W; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Cao Q; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Wang X; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Hu Z; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China.
  • Cai Q; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Lou L; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address: loulq@njau.edu.cn.
Ecotoxicol Environ Saf ; 281: 116644, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38944009
ABSTRACT
The toxic metalloid arsenic is prevalent in the environment and poses a threat to nearly all organisms. However, the mechanism by which phytohormones modulate arsenic resistance is not well-understood. Therefore, we analyzed multiple phytohormones based on the results of transcriptome sequencing, content changes, and related mutant growth under arsenic stress. We found that ethylene was the key phytohormone in Arabidopsis thaliana response to arsenic. Further investigation showed the ethylene-overproducing mutant eto1-1 generated less malondialdehyde (MDA), H2O2, and O2•- under arsenic stress compared to wild-type, while the ethylene-insensitive mutant ein2-5 displayed opposite patterns. Compared to wild-type, eto1-1 accumulated a smaller amount of arsenic and a larger amount of non-protein thiols. Additionally, the immediate ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), enhanced resistance to arsenic in wide-type, but not in mutants with impaired detoxification capability (i.e., cad1-3, pad2-1, abcc1abcc2), which confirmed that ethylene regulated arsenic detoxification by enhancing arsenic chelation. ACC also upregulated the expression of gene(s) involved in arsenic detoxification, among which ABCC2 was directly transcriptionally activated by the ethylene master transcription factor ethylene-insensitive 3 (EIN3). Overall, our study shows that ethylene is the key phytohormone to enhance arsenic resistance by reducing arsenic accumulation and promoting arsenic detoxification at both physiological and molecular levels.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reguladores del Crecimiento de las Plantas / Arsénico / Arabidopsis / Etilenos Idioma: En Revista: Ecotoxicol Environ Saf Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reguladores del Crecimiento de las Plantas / Arsénico / Arabidopsis / Etilenos Idioma: En Revista: Ecotoxicol Environ Saf Año: 2024 Tipo del documento: Article
...