Your browser doesn't support javascript.
loading
A self-immobilizing near-infrared fluorogenic probe for in vivo imaging of fibroblast activation protein-α.
Chen, Yongyi; Du, Jiacheng; Meng, Xiangchuan; Wu, Ling-Ling; Zhang, Qingyang; Han, Xiaowan; Zhang, Leilei; Wang, Qinghua; Hu, Hai-Yu.
Afiliación
  • Chen Y; State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  • Du J; State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  • Meng X; State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  • Wu LL; State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  • Zhang Q; State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  • Han X; State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  • Zhang L; State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
  • Wang Q; State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China. Electronic add
  • Hu HY; State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China. Electronic add
Talanta ; 278: 126475, 2024 Oct 01.
Article en En | MEDLINE | ID: mdl-38944939
ABSTRACT
Fibroblast activation protein-α (FAP) plays a crucial role in various physiological and pathological processes, making it a key target for cancer diagnostics and therapeutics. However, in vivo detection of FAP activity with fluorogenic probes remains challenging due to the rapid diffusion and clearance of fluorescent products from the target. Herein, we developed a self-immobilizing near-infrared (NIR) fluorogenic probe, Hcy-CF2H-PG, by introducing a difluoromethyl group to FAP substrate-caged NIR fluorophore. Upon selective activation by FAP, the fluorescence of Hcy-CF2H-PG was triggered, followed by the covalent labelling of FAP. Hcy-CF2H-PG demonstrated significantly improved sensitivity, selectivity, and long-lasting labelling capacity for FAP both in vitro and in vivo, compared to that of non-immobilized probes. This represents a noteworthy advancement in FAP detection and cancer diagnostics within complex physiological systems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Endopeptidasas / Serina Endopeptidasas / Gelatinasas / Colorantes Fluorescentes / Proteínas de la Membrana Límite: Animals / Humans Idioma: En Revista: Talanta Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Endopeptidasas / Serina Endopeptidasas / Gelatinasas / Colorantes Fluorescentes / Proteínas de la Membrana Límite: Animals / Humans Idioma: En Revista: Talanta Año: 2024 Tipo del documento: Article País de afiliación: China