Your browser doesn't support javascript.
loading
Highly efficient recovery of Zn (II) from zinc-containing wastewater by tourmaline tailings geopolymers to in-situ construct nanoscale ZnS for the photodegradation of tetracycline hydrochloride.
Ren, Zhixiao; Zhang, Caihong; Chen, Jinpeng; Zhang, Hong; Meng, Junping; Han, Xiaoyu; Liang, Jinsheng.
Afiliación
  • Ren Z; Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin,
  • Zhang C; Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin,
  • Chen J; Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin,
  • Zhang H; Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin,
  • Meng J; Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin,
  • Han X; Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin,
  • Liang J; Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, China; Institute of Power Source and Ecomaterials Science, School of Materials Science and Engineering, Hebei University of Technology, Tianjin,
Environ Res ; 259: 119504, 2024 Oct 15.
Article en En | MEDLINE | ID: mdl-38945514
ABSTRACT
While treating zinc-containing wastewater, recovering zinc for reuse as a secondary resource has significant environmental and economic benefits. Herein, based on the alkali-activated tourmaline tailings geopolymers (TTG) after adsorption of zinc ions (Zn (II)), a series of new composites with in-situ construction ZnS nanoparticles on TTG (ZnS/TTG) were synthesized, and used as photocatalysts for the photodegradation of tetracycline hydrochloride (TCH) in solution. Specifically, ZnS nanoparticles were uniformly and stably distributed in the layered structure of TTG, interweaving with each other to generate an interfacial electric field, which could induce more photocarrier generation. Meanwhile, TTG acted as an electron acceptor to accelerate the electron transfer at the interface, thus enhancing the photodegradation activity for TCH. The active radical quenching experiments combined with the ESR indicated that the active species produced during the photocatalytic degradation of TCH by ZnS/TTG composites were •O2- and photogenerated h+. When the initial concentration of Zn (II) was 60 mg/L, the synthesized 60-ZnS/TTG composites (0.5 g/L) reached 91.53% degradation efficiency of TCH (10 mg/L) at pH = 6. Furthermore, the possible pathways and mechanism of 60-ZnS/TTG composites photodegraded TCH were revealed with the aid of degraded intermediates. This report not only proposed valuable references for reusing heavy metal ions and removing TCH from wastewater, but also provided promising ideas for realizing the conversion of used adsorbents into high-efficiency photocatalysts.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotólisis / Tetraciclina / Contaminantes Químicos del Agua / Zinc / Compuestos de Zinc / Aguas Residuales Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotólisis / Tetraciclina / Contaminantes Químicos del Agua / Zinc / Compuestos de Zinc / Aguas Residuales Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos