Your browser doesn't support javascript.
loading
Over 19% Efficient Inverted Organic Photovoltaics Featuring a Molecularly Doped Metal Oxide Electron-Transporting Layer.
Nugraha, Mohamad Insan; Ling, Zhaoheng; Aniés, Filip; Ardhi, Ryanda Enggar Anugrah; Gedda, Murali; Naphade, Dipti; Tsetseris, Leonidas; Heeney, Martin; Anthopoulos, Thomas D.
Afiliación
  • Nugraha MI; King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia.
  • Ling Z; Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia.
  • Aniés F; King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia.
  • Ardhi REA; King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia.
  • Gedda M; King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia.
  • Naphade D; King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia.
  • Tsetseris L; King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia.
  • Heeney M; Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR-15780, Greece.
  • Anthopoulos TD; King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia.
Adv Mater ; 36(35): e2310933, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38949017
ABSTRACT
Molecular doping is commonly utilized to tune the charge transport properties of organic semiconductors. However, applying this technique to electrically dope inorganic materials like metal oxide semiconductors is challenging due to the limited availability of molecules with suitable energy levels and processing characteristics. Herein, n-type doping of zinc oxide (ZnO) films is demonstrated using 1,3-dimethylimidazolium-2-carboxylate (CO2-DMI), a thermally activated organic n-type dopant. Adding CO2-DMI into the ZnO precursor solution and processing it atop a predeposited indium oxide (InOx) layer yield InOx/n-ZnO heterojunctions with increased electron field-effect mobility of 32.6 cm2 V-1 s-1 compared to 18.5 cm2 V-1 s-1 for the pristine InOx/ZnO bilayer. The improved electron transport originates from the ZnO's enhanced crystallinity, reduced hydroxyl concentrations, and fewer oxygen vacancy groups upon doping. Applying the optimally doped InOx/n-ZnO heterojunctions as the electron-transporting layers (ETLs) in organic photovoltaics (OPVs) yields cells with improved power conversion efficiency of 19.06%, up from 18.3% for devices with pristine ZnO, and 18.2% for devices featuring the undoped InOx/ZnO ETL. It is shown that the all-around improved OPV performance originates from synergistic effects associated with CO2-DMI doping of the thermally grown ZnO, highlighting its potential as an electronic dopant for ZnO and potentially other metal oxides.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Arabia Saudita Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Arabia Saudita Pais de publicación: Alemania